scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies

scRNASeq data is revolutionizing our understanding of biological systems, but is still expensive to generate. Here, the authors present a statistical framework that facilitates informed multi-sample experimental design to reduce unnecessary costs and maximize the utility of the generated data.

Guardado en:
Detalles Bibliográficos
Autores principales: Katharina T. Schmid, Barbara Höllbacher, Cristiana Cruceanu, Anika Böttcher, Heiko Lickert, Elisabeth B. Binder, Fabian J. Theis, Matthias Heinig
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/244a1e2437984f2681930cdb0b3790c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:scRNASeq data is revolutionizing our understanding of biological systems, but is still expensive to generate. Here, the authors present a statistical framework that facilitates informed multi-sample experimental design to reduce unnecessary costs and maximize the utility of the generated data.