scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
scRNASeq data is revolutionizing our understanding of biological systems, but is still expensive to generate. Here, the authors present a statistical framework that facilitates informed multi-sample experimental design to reduce unnecessary costs and maximize the utility of the generated data.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/244a1e2437984f2681930cdb0b3790c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:244a1e2437984f2681930cdb0b3790c0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:244a1e2437984f2681930cdb0b3790c02021-11-21T12:36:02ZscPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies10.1038/s41467-021-26779-72041-1723https://doaj.org/article/244a1e2437984f2681930cdb0b3790c02021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26779-7https://doaj.org/toc/2041-1723scRNASeq data is revolutionizing our understanding of biological systems, but is still expensive to generate. Here, the authors present a statistical framework that facilitates informed multi-sample experimental design to reduce unnecessary costs and maximize the utility of the generated data.Katharina T. SchmidBarbara HöllbacherCristiana CruceanuAnika BöttcherHeiko LickertElisabeth B. BinderFabian J. TheisMatthias HeinigNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-18 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Katharina T. Schmid Barbara Höllbacher Cristiana Cruceanu Anika Böttcher Heiko Lickert Elisabeth B. Binder Fabian J. Theis Matthias Heinig scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies |
description |
scRNASeq data is revolutionizing our understanding of biological systems, but is still expensive to generate. Here, the authors present a statistical framework that facilitates informed multi-sample experimental design to reduce unnecessary costs and maximize the utility of the generated data. |
format |
article |
author |
Katharina T. Schmid Barbara Höllbacher Cristiana Cruceanu Anika Böttcher Heiko Lickert Elisabeth B. Binder Fabian J. Theis Matthias Heinig |
author_facet |
Katharina T. Schmid Barbara Höllbacher Cristiana Cruceanu Anika Böttcher Heiko Lickert Elisabeth B. Binder Fabian J. Theis Matthias Heinig |
author_sort |
Katharina T. Schmid |
title |
scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies |
title_short |
scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies |
title_full |
scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies |
title_fullStr |
scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies |
title_full_unstemmed |
scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies |
title_sort |
scpower accelerates and optimizes the design of multi-sample single cell transcriptomic studies |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/244a1e2437984f2681930cdb0b3790c0 |
work_keys_str_mv |
AT katharinatschmid scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies AT barbarahollbacher scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies AT cristianacruceanu scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies AT anikabottcher scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies AT heikolickert scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies AT elisabethbbinder scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies AT fabianjtheis scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies AT matthiasheinig scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies |
_version_ |
1718418873106038784 |