scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies

scRNASeq data is revolutionizing our understanding of biological systems, but is still expensive to generate. Here, the authors present a statistical framework that facilitates informed multi-sample experimental design to reduce unnecessary costs and maximize the utility of the generated data.

Guardado en:
Detalles Bibliográficos
Autores principales: Katharina T. Schmid, Barbara Höllbacher, Cristiana Cruceanu, Anika Böttcher, Heiko Lickert, Elisabeth B. Binder, Fabian J. Theis, Matthias Heinig
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/244a1e2437984f2681930cdb0b3790c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:244a1e2437984f2681930cdb0b3790c0
record_format dspace
spelling oai:doaj.org-article:244a1e2437984f2681930cdb0b3790c02021-11-21T12:36:02ZscPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies10.1038/s41467-021-26779-72041-1723https://doaj.org/article/244a1e2437984f2681930cdb0b3790c02021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26779-7https://doaj.org/toc/2041-1723scRNASeq data is revolutionizing our understanding of biological systems, but is still expensive to generate. Here, the authors present a statistical framework that facilitates informed multi-sample experimental design to reduce unnecessary costs and maximize the utility of the generated data.Katharina T. SchmidBarbara HöllbacherCristiana CruceanuAnika BöttcherHeiko LickertElisabeth B. BinderFabian J. TheisMatthias HeinigNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-18 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Katharina T. Schmid
Barbara Höllbacher
Cristiana Cruceanu
Anika Böttcher
Heiko Lickert
Elisabeth B. Binder
Fabian J. Theis
Matthias Heinig
scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
description scRNASeq data is revolutionizing our understanding of biological systems, but is still expensive to generate. Here, the authors present a statistical framework that facilitates informed multi-sample experimental design to reduce unnecessary costs and maximize the utility of the generated data.
format article
author Katharina T. Schmid
Barbara Höllbacher
Cristiana Cruceanu
Anika Böttcher
Heiko Lickert
Elisabeth B. Binder
Fabian J. Theis
Matthias Heinig
author_facet Katharina T. Schmid
Barbara Höllbacher
Cristiana Cruceanu
Anika Böttcher
Heiko Lickert
Elisabeth B. Binder
Fabian J. Theis
Matthias Heinig
author_sort Katharina T. Schmid
title scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
title_short scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
title_full scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
title_fullStr scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
title_full_unstemmed scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
title_sort scpower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/244a1e2437984f2681930cdb0b3790c0
work_keys_str_mv AT katharinatschmid scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies
AT barbarahollbacher scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies
AT cristianacruceanu scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies
AT anikabottcher scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies
AT heikolickert scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies
AT elisabethbbinder scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies
AT fabianjtheis scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies
AT matthiasheinig scpoweracceleratesandoptimizesthedesignofmultisamplesinglecelltranscriptomicstudies
_version_ 1718418873106038784