scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
scRNASeq data is revolutionizing our understanding of biological systems, but is still expensive to generate. Here, the authors present a statistical framework that facilitates informed multi-sample experimental design to reduce unnecessary costs and maximize the utility of the generated data.
Guardado en:
Autores principales: | Katharina T. Schmid, Barbara Höllbacher, Cristiana Cruceanu, Anika Böttcher, Heiko Lickert, Elisabeth B. Binder, Fabian J. Theis, Matthias Heinig |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/244a1e2437984f2681930cdb0b3790c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Asc-1 regulates white versus beige adipocyte fate in a subcutaneous stromal cell population
por: Lisa Suwandhi, et al.
Publicado: (2021) -
scCODA is a Bayesian model for compositional single-cell data analysis
por: M. Büttner, et al.
Publicado: (2021) -
Serine/Threonine Protein Phosphatase-Mediated Control of the Peptidoglycan Cross-Linking <sc>l</sc>,<sc>d</sc><sc>-</sc>Transpeptidase Pathway in <named-content content-type="genus-species">Enterococcus faecium</named-content>
por: Emmanuelle Sacco, et al.
Publicado: (2014) -
Preparation of single- and double-oligonucleotide antibody conjugates and their application for protein analytics
por: Julius Wiener, et al.
Publicado: (2020) -
scAAVengr, a transcriptome-based pipeline for quantitative ranking of engineered AAVs with single-cell resolution
por: Bilge E Öztürk, et al.
Publicado: (2021)