Supervised Kohonen Self-Organizing Maps of Acute Asthma from Air Pollution Exposure
There are unanswered questions with regards to acute respiratory outcomes, particularly asthma, due to environmental exposures. In contribution to asthma research, the current study explored a computational intelligence paradigm of artificial neural networks (ANNs) called self-organizing maps (SOM)....
Guardado en:
Autores principales: | Moses Mogakolodi Kebalepile, Loveness Nyaradzo Dzikiti, Kuku Voyi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/244bd7eeef034cc6b978a866cb24f090 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genome-wide burden and association analyses implicate copy number variations in asthma risk among children and young adults from Latin America
por: Pablo Oliveira, et al.
Publicado: (2018) -
Development and equivalence of new faces for inclusion in the Childhood Asthma Control Test (C-ACT) response scale
por: Kate Sully, et al.
Publicado: (2021) -
Outdoor air pollution and the onset and exacerbation of asthma
por: Lina Madaniyazi, et al.
Publicado: (2021) -
The Journal of asthma
Publicado: (1981) -
The Spatio-temporal Epidemiology of Asthma Patient Visits in Relation to Meteorological Parameters and Air Pollution Factors as a Result of Seasonal Change in Songkhla Province
por: Surichai Bilheem, et al.
Publicado: (2021)