Fusion-Learning of Bayesian Network Models for Fault Diagnostics
Bayesian Network (BN) models are being successfully applied to improve fault diagnosis, which in turn can improve equipment uptime and customer service. Most of these BN models are essentially trained using quantitative data obtained from sensors. However, sensors may not be able to cover all faults...
Enregistré dans:
Auteurs principaux: | Toyosi Ademujimi, Vittaldas Prabhu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2468e21bba1f47cbae537d27f9c99e1b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Integrated Fuzzy Fault Tree Model with Bayesian Network-Based Maintenance Optimization of Complex Equipment in Automotive Manufacturing
par: Hamzeh Soltanali, et autres
Publié: (2021) -
A Sequential Inspection Procedure for Fault Detection in Multistage Manufacturing Processes
par: Rubén Moliner-Heredia, et autres
Publié: (2021) -
Thermographic Fault Diagnosis of Ventilation in BLDC Motors
par: Adam Glowacz
Publié: (2021) -
Assessment of Dynamic Bayesian Models for Gas Turbine Diagnostics, Part 1: Prior Probability Analysis
par: Valentina Zaccaria, et autres
Publié: (2021) -
Transformation towards a Smart Maintenance Factory: The Case of a Vessel Maintenance Depot
par: Gwang Seok Kim, et autres
Publié: (2021)