Fusion-Learning of Bayesian Network Models for Fault Diagnostics
Bayesian Network (BN) models are being successfully applied to improve fault diagnosis, which in turn can improve equipment uptime and customer service. Most of these BN models are essentially trained using quantitative data obtained from sensors. However, sensors may not be able to cover all faults...
Guardado en:
Autores principales: | Toyosi Ademujimi, Vittaldas Prabhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2468e21bba1f47cbae537d27f9c99e1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Integrated Fuzzy Fault Tree Model with Bayesian Network-Based Maintenance Optimization of Complex Equipment in Automotive Manufacturing
por: Hamzeh Soltanali, et al.
Publicado: (2021) -
A Sequential Inspection Procedure for Fault Detection in Multistage Manufacturing Processes
por: Rubén Moliner-Heredia, et al.
Publicado: (2021) -
Thermographic Fault Diagnosis of Ventilation in BLDC Motors
por: Adam Glowacz
Publicado: (2021) -
Assessment of Dynamic Bayesian Models for Gas Turbine Diagnostics, Part 1: Prior Probability Analysis
por: Valentina Zaccaria, et al.
Publicado: (2021) -
Transformation towards a Smart Maintenance Factory: The Case of a Vessel Maintenance Depot
por: Gwang Seok Kim, et al.
Publicado: (2021)