Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>

ABSTRACT In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular ta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrea Rocker, Jake A. Lacey, Matthew J. Belousoff, Jonathan J. Wilksch, Richard A. Strugnell, Mark R. Davies, Trevor Lithgow
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/247288d710f642659e2235f566ef4e3c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:247288d710f642659e2235f566ef4e3c
record_format dspace
spelling oai:doaj.org-article:247288d710f642659e2235f566ef4e3c2021-11-15T15:57:02ZGlobal Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>10.1128/mBio.00603-202150-7511https://doaj.org/article/247288d710f642659e2235f566ef4e3c2020-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00603-20https://doaj.org/toc/2150-7511ABSTRACT In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for β-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniae. IMPORTANCE Klebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and β-lactamase inhibitors could be effective on porin-deficient K. pneumoniae. Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant—and collateral drug-resistant—phenotypes in K. pneumoniae.Andrea RockerJake A. LaceyMatthew J. BelousoffJonathan J. WilkschRichard A. StrugnellMark R. DaviesTrevor LithgowAmerican Society for Microbiologyarticleantimicrobial resistanceporinOmpK37beta-barrelcarbapenemcarbapenemsMicrobiologyQR1-502ENmBio, Vol 11, Iss 2 (2020)
institution DOAJ
collection DOAJ
language EN
topic antimicrobial resistance
porin
OmpK37
beta-barrel
carbapenem
carbapenems
Microbiology
QR1-502
spellingShingle antimicrobial resistance
porin
OmpK37
beta-barrel
carbapenem
carbapenems
Microbiology
QR1-502
Andrea Rocker
Jake A. Lacey
Matthew J. Belousoff
Jonathan J. Wilksch
Richard A. Strugnell
Mark R. Davies
Trevor Lithgow
Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>
description ABSTRACT In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for β-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniae. IMPORTANCE Klebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and β-lactamase inhibitors could be effective on porin-deficient K. pneumoniae. Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant—and collateral drug-resistant—phenotypes in K. pneumoniae.
format article
author Andrea Rocker
Jake A. Lacey
Matthew J. Belousoff
Jonathan J. Wilksch
Richard A. Strugnell
Mark R. Davies
Trevor Lithgow
author_facet Andrea Rocker
Jake A. Lacey
Matthew J. Belousoff
Jonathan J. Wilksch
Richard A. Strugnell
Mark R. Davies
Trevor Lithgow
author_sort Andrea Rocker
title Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>
title_short Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>
title_full Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>
title_fullStr Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>
title_full_unstemmed Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>
title_sort global trends in proteome remodeling of the outer membrane modulate antimicrobial permeability in <named-content content-type="genus-species">klebsiella pneumoniae</named-content>
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/247288d710f642659e2235f566ef4e3c
work_keys_str_mv AT andrearocker globaltrendsinproteomeremodelingoftheoutermembranemodulateantimicrobialpermeabilityinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent
AT jakealacey globaltrendsinproteomeremodelingoftheoutermembranemodulateantimicrobialpermeabilityinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent
AT matthewjbelousoff globaltrendsinproteomeremodelingoftheoutermembranemodulateantimicrobialpermeabilityinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent
AT jonathanjwilksch globaltrendsinproteomeremodelingoftheoutermembranemodulateantimicrobialpermeabilityinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent
AT richardastrugnell globaltrendsinproteomeremodelingoftheoutermembranemodulateantimicrobialpermeabilityinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent
AT markrdavies globaltrendsinproteomeremodelingoftheoutermembranemodulateantimicrobialpermeabilityinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent
AT trevorlithgow globaltrendsinproteomeremodelingoftheoutermembranemodulateantimicrobialpermeabilityinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent
_version_ 1718427018429726720