Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis.

Angiogenesis is the process by which blood vessels form from pre-existing vessels. It plays a key role in many biological processes, including embryonic development and wound healing, and contributes to many diseases including cancer and rheumatoid arthritis. The structure of the resulting vessel ne...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: John T Nardini, Bernadette J Stolz, Kevin B Flores, Heather A Harrington, Helen M Byrne
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/24875cb0b6f143c9b9e5b1a630a64832
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:24875cb0b6f143c9b9e5b1a630a64832
record_format dspace
spelling oai:doaj.org-article:24875cb0b6f143c9b9e5b1a630a648322021-11-25T05:40:34ZTopological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis.1553-734X1553-735810.1371/journal.pcbi.1009094https://doaj.org/article/24875cb0b6f143c9b9e5b1a630a648322021-06-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009094https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Angiogenesis is the process by which blood vessels form from pre-existing vessels. It plays a key role in many biological processes, including embryonic development and wound healing, and contributes to many diseases including cancer and rheumatoid arthritis. The structure of the resulting vessel networks determines their ability to deliver nutrients and remove waste products from biological tissues. Here we simulate the Anderson-Chaplain model of angiogenesis at different parameter values and quantify the vessel architectures of the resulting synthetic data. Specifically, we propose a topological data analysis (TDA) pipeline for systematic analysis of the model. TDA is a vibrant and relatively new field of computational mathematics for studying the shape of data. We compute topological and standard descriptors of model simulations generated by different parameter values. We show that TDA of model simulation data stratifies parameter space into regions with similar vessel morphology. The methodologies proposed here are widely applicable to other synthetic and experimental data including wound healing, development, and plant biology.John T NardiniBernadette J StolzKevin B FloresHeather A HarringtonHelen M ByrnePublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 6, p e1009094 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
John T Nardini
Bernadette J Stolz
Kevin B Flores
Heather A Harrington
Helen M Byrne
Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis.
description Angiogenesis is the process by which blood vessels form from pre-existing vessels. It plays a key role in many biological processes, including embryonic development and wound healing, and contributes to many diseases including cancer and rheumatoid arthritis. The structure of the resulting vessel networks determines their ability to deliver nutrients and remove waste products from biological tissues. Here we simulate the Anderson-Chaplain model of angiogenesis at different parameter values and quantify the vessel architectures of the resulting synthetic data. Specifically, we propose a topological data analysis (TDA) pipeline for systematic analysis of the model. TDA is a vibrant and relatively new field of computational mathematics for studying the shape of data. We compute topological and standard descriptors of model simulations generated by different parameter values. We show that TDA of model simulation data stratifies parameter space into regions with similar vessel morphology. The methodologies proposed here are widely applicable to other synthetic and experimental data including wound healing, development, and plant biology.
format article
author John T Nardini
Bernadette J Stolz
Kevin B Flores
Heather A Harrington
Helen M Byrne
author_facet John T Nardini
Bernadette J Stolz
Kevin B Flores
Heather A Harrington
Helen M Byrne
author_sort John T Nardini
title Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis.
title_short Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis.
title_full Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis.
title_fullStr Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis.
title_full_unstemmed Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis.
title_sort topological data analysis distinguishes parameter regimes in the anderson-chaplain model of angiogenesis.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/24875cb0b6f143c9b9e5b1a630a64832
work_keys_str_mv AT johntnardini topologicaldataanalysisdistinguishesparameterregimesintheandersonchaplainmodelofangiogenesis
AT bernadettejstolz topologicaldataanalysisdistinguishesparameterregimesintheandersonchaplainmodelofangiogenesis
AT kevinbflores topologicaldataanalysisdistinguishesparameterregimesintheandersonchaplainmodelofangiogenesis
AT heatheraharrington topologicaldataanalysisdistinguishesparameterregimesintheandersonchaplainmodelofangiogenesis
AT helenmbyrne topologicaldataanalysisdistinguishesparameterregimesintheandersonchaplainmodelofangiogenesis
_version_ 1718414506038657024