A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
Abstract The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numerous published prognostic tools. However, few models have been prospectively validated and none report implementation in practice. Here, we use 3345 retrospective and 474 prospective hospitalizations to...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24a1e6844b2b4deb962b0c15b73995db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:24a1e6844b2b4deb962b0c15b73995db |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:24a1e6844b2b4deb962b0c15b73995db2021-12-02T17:13:14ZA validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients10.1038/s41746-020-00343-x2398-6352https://doaj.org/article/24a1e6844b2b4deb962b0c15b73995db2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41746-020-00343-xhttps://doaj.org/toc/2398-6352Abstract The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numerous published prognostic tools. However, few models have been prospectively validated and none report implementation in practice. Here, we use 3345 retrospective and 474 prospective hospitalizations to develop and validate a parsimonious model to identify patients with favorable outcomes within 96 h of a prediction, based on real-time lab values, vital signs, and oxygen support variables. In retrospective and prospective validation, the model achieves high average precision (88.6% 95% CI: [88.4–88.7] and 90.8% [90.8–90.8]) and discrimination (95.1% [95.1–95.2] and 86.8% [86.8–86.9]) respectively. We implemented and integrated the model into the EHR, achieving a positive predictive value of 93.3% with 41% sensitivity. Preliminary results suggest clinicians are adopting these scores into their clinical workflows.Narges RazavianVincent J. MajorMukund SudarshanJesse Burk-RafelPeter StellaHardev RandhawaSeda BilalogluJi ChenVuthy NguyWalter WangHao ZhangIlan ReinsteinDavid KudlowitzCameron ZengerMeng CaoRuina ZhangSiddhant DograKeerthi B. HarishBrian BosworthFritz FrancoisLeora I. HorwitzRajesh RanganathJonathan AustrianYindalon AphinyanaphongsNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 3, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Computer applications to medicine. Medical informatics R858-859.7 |
spellingShingle |
Computer applications to medicine. Medical informatics R858-859.7 Narges Razavian Vincent J. Major Mukund Sudarshan Jesse Burk-Rafel Peter Stella Hardev Randhawa Seda Bilaloglu Ji Chen Vuthy Nguy Walter Wang Hao Zhang Ilan Reinstein David Kudlowitz Cameron Zenger Meng Cao Ruina Zhang Siddhant Dogra Keerthi B. Harish Brian Bosworth Fritz Francois Leora I. Horwitz Rajesh Ranganath Jonathan Austrian Yindalon Aphinyanaphongs A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients |
description |
Abstract The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numerous published prognostic tools. However, few models have been prospectively validated and none report implementation in practice. Here, we use 3345 retrospective and 474 prospective hospitalizations to develop and validate a parsimonious model to identify patients with favorable outcomes within 96 h of a prediction, based on real-time lab values, vital signs, and oxygen support variables. In retrospective and prospective validation, the model achieves high average precision (88.6% 95% CI: [88.4–88.7] and 90.8% [90.8–90.8]) and discrimination (95.1% [95.1–95.2] and 86.8% [86.8–86.9]) respectively. We implemented and integrated the model into the EHR, achieving a positive predictive value of 93.3% with 41% sensitivity. Preliminary results suggest clinicians are adopting these scores into their clinical workflows. |
format |
article |
author |
Narges Razavian Vincent J. Major Mukund Sudarshan Jesse Burk-Rafel Peter Stella Hardev Randhawa Seda Bilaloglu Ji Chen Vuthy Nguy Walter Wang Hao Zhang Ilan Reinstein David Kudlowitz Cameron Zenger Meng Cao Ruina Zhang Siddhant Dogra Keerthi B. Harish Brian Bosworth Fritz Francois Leora I. Horwitz Rajesh Ranganath Jonathan Austrian Yindalon Aphinyanaphongs |
author_facet |
Narges Razavian Vincent J. Major Mukund Sudarshan Jesse Burk-Rafel Peter Stella Hardev Randhawa Seda Bilaloglu Ji Chen Vuthy Nguy Walter Wang Hao Zhang Ilan Reinstein David Kudlowitz Cameron Zenger Meng Cao Ruina Zhang Siddhant Dogra Keerthi B. Harish Brian Bosworth Fritz Francois Leora I. Horwitz Rajesh Ranganath Jonathan Austrian Yindalon Aphinyanaphongs |
author_sort |
Narges Razavian |
title |
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients |
title_short |
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients |
title_full |
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients |
title_fullStr |
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients |
title_full_unstemmed |
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients |
title_sort |
validated, real-time prediction model for favorable outcomes in hospitalized covid-19 patients |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/24a1e6844b2b4deb962b0c15b73995db |
work_keys_str_mv |
AT nargesrazavian avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT vincentjmajor avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT mukundsudarshan avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT jesseburkrafel avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT peterstella avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT hardevrandhawa avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT sedabilaloglu avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT jichen avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT vuthynguy avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT walterwang avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT haozhang avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT ilanreinstein avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT davidkudlowitz avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT cameronzenger avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT mengcao avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT ruinazhang avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT siddhantdogra avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT keerthibharish avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT brianbosworth avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT fritzfrancois avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT leoraihorwitz avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT rajeshranganath avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT jonathanaustrian avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT yindalonaphinyanaphongs avalidatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT nargesrazavian validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT vincentjmajor validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT mukundsudarshan validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT jesseburkrafel validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT peterstella validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT hardevrandhawa validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT sedabilaloglu validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT jichen validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT vuthynguy validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT walterwang validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT haozhang validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT ilanreinstein validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT davidkudlowitz validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT cameronzenger validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT mengcao validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT ruinazhang validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT siddhantdogra validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT keerthibharish validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT brianbosworth validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT fritzfrancois validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT leoraihorwitz validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT rajeshranganath validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT jonathanaustrian validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients AT yindalonaphinyanaphongs validatedrealtimepredictionmodelforfavorableoutcomesinhospitalizedcovid19patients |
_version_ |
1718381366406545408 |