Novel CE-CBCE feature extraction method for object classification using a low-density LiDAR point cloud.
Low-end LiDAR sensor provides an alternative for depth measurement and object recognition for lightweight devices. However due to low computing capacity, complicated algorithms are incompatible to be performed on the device, with sparse information further limits the feature available for extraction...
Guardado en:
Autores principales: | Muhammad Rabani Mohd Romlay, Azhar Mohd Ibrahim, Siti Fauziah Toha, Philippe De Wilde, Ibrahim Venkat |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24a9f0aeb87b4da0a1463a1cd31fbfa8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research on the improvement of single tree segmentation algorithm based on airborne LiDAR point cloud
por: Chen Qiuji, et al.
Publicado: (2021) -
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
por: Genping Zhao, et al.
Publicado: (2021) -
Surrounding Objects Detection and Tracking for Autonomous Driving Using LiDAR and Radar Fusion
por: Ze Liu, et al.
Publicado: (2021) -
An Algorithm for Fitting Sphere Target of Terrestrial LiDAR
por: Yintao Shi, et al.
Publicado: (2021) -
LiDAR DTM: artifacts, and correction for river altitudes
por: Jean-François Parrot, et al.
Publicado: (2016)