Novel CE-CBCE feature extraction method for object classification using a low-density LiDAR point cloud.
Low-end LiDAR sensor provides an alternative for depth measurement and object recognition for lightweight devices. However due to low computing capacity, complicated algorithms are incompatible to be performed on the device, with sparse information further limits the feature available for extraction...
Enregistré dans:
Auteurs principaux: | Muhammad Rabani Mohd Romlay, Azhar Mohd Ibrahim, Siti Fauziah Toha, Philippe De Wilde, Ibrahim Venkat |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/24a9f0aeb87b4da0a1463a1cd31fbfa8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Research on the improvement of single tree segmentation algorithm based on airborne LiDAR point cloud
par: Chen Qiuji, et autres
Publié: (2021) -
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
par: Genping Zhao, et autres
Publié: (2021) -
Surrounding Objects Detection and Tracking for Autonomous Driving Using LiDAR and Radar Fusion
par: Ze Liu, et autres
Publié: (2021) -
An Algorithm for Fitting Sphere Target of Terrestrial LiDAR
par: Yintao Shi, et autres
Publié: (2021) -
LiDAR DTM: artifacts, and correction for river altitudes
par: Jean-François Parrot, et autres
Publié: (2016)