Multi-view learning for software defect prediction
Background: Traditionally, machine learning algorithms have been simply applied for software defect prediction by considering single-view data, meaning the input data contains a single feature vector. Nevertheless, different software engineering data sources may include multiple and partially indep...
Guardado en:
Autores principales: | Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wroclaw University of Science and Technology
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24ab5bfe8ea24ec68f62a57a46c2184d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning Software Defect Prediction Methods for Cloud Environments Research
por: Wenjian Liu, et al.
Publicado: (2021) -
Surface Defect Detection of Seals Based on K-Means Clustering Algorithm and Particle Swarm Optimization
por: Xiaoguang Li, et al.
Publicado: (2021) -
Analog Circuit Soft Fault Diagnosis Based on Sparse Random Projections and K-Nearest Neighbor
por: Jian Sun, et al.
Publicado: (2021) -
The Model of Makerspace Development Element and Performance Analysis Based on NVivo Classification
por: Yingyan Wang, et al.
Publicado: (2021) -
CT Imaging in the Diagnosis of Lung Injury of Organophosphorus Poisoning and Analysis of Its Correlation with Procalcitonin and C-Reactive Protein Levels
por: Wenwen Sun, et al.
Publicado: (2021)