Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion

Microgravity induces a cephalad fluid shift that is responsible for cephalic venous stasis that may increase intracranial pressure (ICP) in astronauts. However, the effects of microgravity on regional cerebral blood flow (rCBF) are not known. We therefore investigated changes in rCBF in a 5-day dry...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Laurent Guillon, Marc Kermorgant, Thomas Charvolin, Fabrice Bonneville, Marie-Pierre Bareille, Emmanuelle Cassol, Arnaud Beck, Marie Beaurain, Patrice Péran, Jean-Albert Lotterie, Anne Pavy-Le Traon, Pierre Payoux
Format: article
Langue:EN
Publié: Frontiers Media S.A. 2021
Sujets:
Accès en ligne:https://doaj.org/article/24adad6fc2834dd5a32aa240b5887b7f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Microgravity induces a cephalad fluid shift that is responsible for cephalic venous stasis that may increase intracranial pressure (ICP) in astronauts. However, the effects of microgravity on regional cerebral blood flow (rCBF) are not known. We therefore investigated changes in rCBF in a 5-day dry immersion (DI) model. Moreover, we tested thigh cuffs as a countermeasure to prevent potential microgravity-induced modifications in rCBF. Around 18 healthy male participants underwent 5-day DI with or without a thigh cuffs countermeasure. They were randomly allocated to a control (n=9) or cuffs (n=9) group. rCBF was measured 4days before DI and at the end of the fifth day of DI (DI5), using single-photon emission computed tomography (SPECT) with radiopharmaceutical 99mTc-hexamethyl propylene amine oxime (99mTc-HMPAO). SPECT images were processed using statistical parametric mapping (SPM12) software. At DI5, we observed a significant decrease in rCBF in 32 cortical and subcortical regions, with greater hypoperfusion in basal ganglia (right putamen peak level: z=4.71, puncorr<0.001), bilateral occipital regions (left superior occipital peak level: z=4.51, puncorr<0.001), bilateral insula (right insula peak level: 4.10, puncorr<0.001), and bilateral inferior temporal (right inferior temporal peak level: 4.07, puncorr<0.001). No significant difference was found between the control and cuffs groups on change in rCBF after 5days of DI. After a 5-day DI, we found a decrease in rCBF in cortical and subcortical regions. However, thigh cuffs countermeasure failed to prevent hypoperfusion. To date, this is the first study measuring rCBF in DI. Further investigations are needed in order to better understand the underlying mechanisms in cerebral blood flow (CBF) changes after exposure to microgravity.