Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion
Microgravity induces a cephalad fluid shift that is responsible for cephalic venous stasis that may increase intracranial pressure (ICP) in astronauts. However, the effects of microgravity on regional cerebral blood flow (rCBF) are not known. We therefore investigated changes in rCBF in a 5-day dry...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24adad6fc2834dd5a32aa240b5887b7f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:24adad6fc2834dd5a32aa240b5887b7f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:24adad6fc2834dd5a32aa240b5887b7f2021-11-22T06:41:54ZReduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion1664-042X10.3389/fphys.2021.789298https://doaj.org/article/24adad6fc2834dd5a32aa240b5887b7f2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fphys.2021.789298/fullhttps://doaj.org/toc/1664-042XMicrogravity induces a cephalad fluid shift that is responsible for cephalic venous stasis that may increase intracranial pressure (ICP) in astronauts. However, the effects of microgravity on regional cerebral blood flow (rCBF) are not known. We therefore investigated changes in rCBF in a 5-day dry immersion (DI) model. Moreover, we tested thigh cuffs as a countermeasure to prevent potential microgravity-induced modifications in rCBF. Around 18 healthy male participants underwent 5-day DI with or without a thigh cuffs countermeasure. They were randomly allocated to a control (n=9) or cuffs (n=9) group. rCBF was measured 4days before DI and at the end of the fifth day of DI (DI5), using single-photon emission computed tomography (SPECT) with radiopharmaceutical 99mTc-hexamethyl propylene amine oxime (99mTc-HMPAO). SPECT images were processed using statistical parametric mapping (SPM12) software. At DI5, we observed a significant decrease in rCBF in 32 cortical and subcortical regions, with greater hypoperfusion in basal ganglia (right putamen peak level: z=4.71, puncorr<0.001), bilateral occipital regions (left superior occipital peak level: z=4.51, puncorr<0.001), bilateral insula (right insula peak level: 4.10, puncorr<0.001), and bilateral inferior temporal (right inferior temporal peak level: 4.07, puncorr<0.001). No significant difference was found between the control and cuffs groups on change in rCBF after 5days of DI. After a 5-day DI, we found a decrease in rCBF in cortical and subcortical regions. However, thigh cuffs countermeasure failed to prevent hypoperfusion. To date, this is the first study measuring rCBF in DI. Further investigations are needed in order to better understand the underlying mechanisms in cerebral blood flow (CBF) changes after exposure to microgravity.Laurent GuillonMarc KermorgantThomas CharvolinFabrice BonnevilleFabrice BonnevilleMarie-Pierre BareilleEmmanuelle CassolArnaud BeckMarie BeaurainPatrice PéranJean-Albert LotterieJean-Albert LotterieAnne Pavy-Le TraonAnne Pavy-Le TraonPierre PayouxPierre PayouxFrontiers Media S.A.articleHMPAOregional cerebral blood flowmicrogravitydry immersionthigh cuffsDI5-CUFFSPhysiologyQP1-981ENFrontiers in Physiology, Vol 12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
HMPAO regional cerebral blood flow microgravity dry immersion thigh cuffs DI5-CUFFS Physiology QP1-981 |
spellingShingle |
HMPAO regional cerebral blood flow microgravity dry immersion thigh cuffs DI5-CUFFS Physiology QP1-981 Laurent Guillon Marc Kermorgant Thomas Charvolin Fabrice Bonneville Fabrice Bonneville Marie-Pierre Bareille Emmanuelle Cassol Arnaud Beck Marie Beaurain Patrice Péran Jean-Albert Lotterie Jean-Albert Lotterie Anne Pavy-Le Traon Anne Pavy-Le Traon Pierre Payoux Pierre Payoux Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion |
description |
Microgravity induces a cephalad fluid shift that is responsible for cephalic venous stasis that may increase intracranial pressure (ICP) in astronauts. However, the effects of microgravity on regional cerebral blood flow (rCBF) are not known. We therefore investigated changes in rCBF in a 5-day dry immersion (DI) model. Moreover, we tested thigh cuffs as a countermeasure to prevent potential microgravity-induced modifications in rCBF. Around 18 healthy male participants underwent 5-day DI with or without a thigh cuffs countermeasure. They were randomly allocated to a control (n=9) or cuffs (n=9) group. rCBF was measured 4days before DI and at the end of the fifth day of DI (DI5), using single-photon emission computed tomography (SPECT) with radiopharmaceutical 99mTc-hexamethyl propylene amine oxime (99mTc-HMPAO). SPECT images were processed using statistical parametric mapping (SPM12) software. At DI5, we observed a significant decrease in rCBF in 32 cortical and subcortical regions, with greater hypoperfusion in basal ganglia (right putamen peak level: z=4.71, puncorr<0.001), bilateral occipital regions (left superior occipital peak level: z=4.51, puncorr<0.001), bilateral insula (right insula peak level: 4.10, puncorr<0.001), and bilateral inferior temporal (right inferior temporal peak level: 4.07, puncorr<0.001). No significant difference was found between the control and cuffs groups on change in rCBF after 5days of DI. After a 5-day DI, we found a decrease in rCBF in cortical and subcortical regions. However, thigh cuffs countermeasure failed to prevent hypoperfusion. To date, this is the first study measuring rCBF in DI. Further investigations are needed in order to better understand the underlying mechanisms in cerebral blood flow (CBF) changes after exposure to microgravity. |
format |
article |
author |
Laurent Guillon Marc Kermorgant Thomas Charvolin Fabrice Bonneville Fabrice Bonneville Marie-Pierre Bareille Emmanuelle Cassol Arnaud Beck Marie Beaurain Patrice Péran Jean-Albert Lotterie Jean-Albert Lotterie Anne Pavy-Le Traon Anne Pavy-Le Traon Pierre Payoux Pierre Payoux |
author_facet |
Laurent Guillon Marc Kermorgant Thomas Charvolin Fabrice Bonneville Fabrice Bonneville Marie-Pierre Bareille Emmanuelle Cassol Arnaud Beck Marie Beaurain Patrice Péran Jean-Albert Lotterie Jean-Albert Lotterie Anne Pavy-Le Traon Anne Pavy-Le Traon Pierre Payoux Pierre Payoux |
author_sort |
Laurent Guillon |
title |
Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion |
title_short |
Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion |
title_full |
Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion |
title_fullStr |
Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion |
title_full_unstemmed |
Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion |
title_sort |
reduced regional cerebral blood flow measured by 99mtc-hexamethyl propylene amine oxime single-photon emission computed tomography in microgravity simulated by 5-day dry immersion |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/24adad6fc2834dd5a32aa240b5887b7f |
work_keys_str_mv |
AT laurentguillon reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT marckermorgant reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT thomascharvolin reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT fabricebonneville reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT fabricebonneville reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT mariepierrebareille reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT emmanuellecassol reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT arnaudbeck reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT mariebeaurain reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT patriceperan reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT jeanalbertlotterie reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT jeanalbertlotterie reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT annepavyletraon reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT annepavyletraon reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT pierrepayoux reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion AT pierrepayoux reducedregionalcerebralbloodflowmeasuredby99mtchexamethylpropyleneamineoximesinglephotonemissioncomputedtomographyinmicrogravitysimulatedby5daydryimmersion |
_version_ |
1718418090881974272 |