Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
In the present paperwe study the existence of nontrivial solutions of a class of static coupled nonlinear fractional Hartree type system. First, we use the direct moving plane methods to establish the maximum principle(Decay at infinity and Narrow region principle) and prove the symmetry and nonexis...
Guardado en:
Autor principal: | Wang Jun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24bdcdec93cd462bb2053dca8596c192 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Existence of multiple nontrivial solutions of the nonlinear Schrödinger-Korteweg-de Vries type system
por: Geng Qiuping, et al.
Publicado: (2021) -
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
por: Han Qi
Publicado: (2021) -
Existence and concentration of positive solutions for a critical p&q equation
por: Costa Gustavo S., et al.
Publicado: (2021) -
Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
por: Candito Pasquale, et al.
Publicado: (2021) -
Classification of nonnegative solutions to static Schrödinger–Hartree–Maxwell system involving the fractional Laplacian
por: Yunting Li, et al.
Publicado: (2021)