Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
In the present paperwe study the existence of nontrivial solutions of a class of static coupled nonlinear fractional Hartree type system. First, we use the direct moving plane methods to establish the maximum principle(Decay at infinity and Narrow region principle) and prove the symmetry and nonexis...
Enregistré dans:
Auteur principal: | Wang Jun |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/24bdcdec93cd462bb2053dca8596c192 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Existence of multiple nontrivial solutions of the nonlinear Schrödinger-Korteweg-de Vries type system
par: Geng Qiuping, et autres
Publié: (2021) -
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
par: Han Qi
Publié: (2021) -
Existence and concentration of positive solutions for a critical p&q equation
par: Costa Gustavo S., et autres
Publié: (2021) -
Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
par: Candito Pasquale, et autres
Publié: (2021) -
Classification of nonnegative solutions to static Schrödinger–Hartree–Maxwell system involving the fractional Laplacian
par: Yunting Li, et autres
Publié: (2021)