Automatic Sequence-Based Network for Lung Diseases Detection in Chest CT
ObjectiveTo develop an accurate and rapid computed tomography (CT)-based interpretable AI system for the diagnosis of lung diseases.BackgroundMost existing AI systems only focus on viral pneumonia (e.g., COVID-19), specifically, ignoring other similar lung diseases: e.g., bacterial pneumonia (BP), w...
Guardado en:
Autores principales: | Jinkui Hao, Jianyang Xie, Ri Liu, Huaying Hao, Yuhui Ma, Kun Yan, Ruirui Liu, Yalin Zheng, Jianjun Zheng, Jiang Liu, Jingfeng Zhang, Yitian Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24c2ff35d4f8494fa74dc53f979e7b6e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
por: Ghulam Farooque, et al.
Publicado: (2021) -
Hybrid Deep Spatio-Temporal Models for Traffic Flow Prediction on Holidays and Under Adverse Weather
por: Wensong Zhang, et al.
Publicado: (2021) -
Violence Recognition Based on Auditory-Visual Fusion of Autoencoder Mapping
por: Jiu Lou, et al.
Publicado: (2021) -
Predicting Changes in Spatiotemporal Groundwater Storage Through the Integration of Multi-Satellite Data and Deep Learning Models
por: Jae Young Seo, et al.
Publicado: (2021) -
Short-term prediction of wind power density using convolutional LSTM network
por: Gupta Deepak, et al.
Publicado: (2021)