Transferrin coated nanoparticles: study of the bionano interface in human plasma.
It is now well established that the surface of nanoparticles (NPs) in a biological environment is immediately modified by the adsorption of biomolecules with the formation of a protein corona and it is also accepted that the protein corona, rather than the original nanoparticle surface, defines a ne...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24ca73850bad4e08aa791c74f372c992 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:24ca73850bad4e08aa791c74f372c992 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:24ca73850bad4e08aa791c74f372c9922021-11-18T07:11:54ZTransferrin coated nanoparticles: study of the bionano interface in human plasma.1932-620310.1371/journal.pone.0040685https://doaj.org/article/24ca73850bad4e08aa791c74f372c9922012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22829881/?tool=EBIhttps://doaj.org/toc/1932-6203It is now well established that the surface of nanoparticles (NPs) in a biological environment is immediately modified by the adsorption of biomolecules with the formation of a protein corona and it is also accepted that the protein corona, rather than the original nanoparticle surface, defines a new biological identity. Consequently, a methodology to effectively study the interaction between nanomaterials and the biological corona encountered within an organism is a key objective in nanoscience for understanding the impact of the nanoparticle-protein interactions on the biological response in vitro and in vivo. Here, we outline an integrated methodology to address the different aspects governing the formation and the function of the protein corona of polystyrene nanoparticles coated with Transferrin by different strategies. Protein-NP complexes are studied both in situ (in human plasma, full corona FC) and after washing (hard corona, HC) in terms of structural properties, composition and second-order interactions with protein microarrays. Human protein microarrays are used to effectively study NP-corona/proteins interactions addressing the growing demand to advance investigations of the extrinsic function of corona complexes. Our data highlight the importance of this methodology as an analysis to be used in advance of the application of engineered NPs in biological environments.Andrzej S PitekDavid O'ConnellEugene MahonMarco P MonopoliFrancesca Baldelli BombelliKenneth A DawsonPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 7, p e40685 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Andrzej S Pitek David O'Connell Eugene Mahon Marco P Monopoli Francesca Baldelli Bombelli Kenneth A Dawson Transferrin coated nanoparticles: study of the bionano interface in human plasma. |
description |
It is now well established that the surface of nanoparticles (NPs) in a biological environment is immediately modified by the adsorption of biomolecules with the formation of a protein corona and it is also accepted that the protein corona, rather than the original nanoparticle surface, defines a new biological identity. Consequently, a methodology to effectively study the interaction between nanomaterials and the biological corona encountered within an organism is a key objective in nanoscience for understanding the impact of the nanoparticle-protein interactions on the biological response in vitro and in vivo. Here, we outline an integrated methodology to address the different aspects governing the formation and the function of the protein corona of polystyrene nanoparticles coated with Transferrin by different strategies. Protein-NP complexes are studied both in situ (in human plasma, full corona FC) and after washing (hard corona, HC) in terms of structural properties, composition and second-order interactions with protein microarrays. Human protein microarrays are used to effectively study NP-corona/proteins interactions addressing the growing demand to advance investigations of the extrinsic function of corona complexes. Our data highlight the importance of this methodology as an analysis to be used in advance of the application of engineered NPs in biological environments. |
format |
article |
author |
Andrzej S Pitek David O'Connell Eugene Mahon Marco P Monopoli Francesca Baldelli Bombelli Kenneth A Dawson |
author_facet |
Andrzej S Pitek David O'Connell Eugene Mahon Marco P Monopoli Francesca Baldelli Bombelli Kenneth A Dawson |
author_sort |
Andrzej S Pitek |
title |
Transferrin coated nanoparticles: study of the bionano interface in human plasma. |
title_short |
Transferrin coated nanoparticles: study of the bionano interface in human plasma. |
title_full |
Transferrin coated nanoparticles: study of the bionano interface in human plasma. |
title_fullStr |
Transferrin coated nanoparticles: study of the bionano interface in human plasma. |
title_full_unstemmed |
Transferrin coated nanoparticles: study of the bionano interface in human plasma. |
title_sort |
transferrin coated nanoparticles: study of the bionano interface in human plasma. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/24ca73850bad4e08aa791c74f372c992 |
work_keys_str_mv |
AT andrzejspitek transferrincoatednanoparticlesstudyofthebionanointerfaceinhumanplasma AT davidoconnell transferrincoatednanoparticlesstudyofthebionanointerfaceinhumanplasma AT eugenemahon transferrincoatednanoparticlesstudyofthebionanointerfaceinhumanplasma AT marcopmonopoli transferrincoatednanoparticlesstudyofthebionanointerfaceinhumanplasma AT francescabaldellibombelli transferrincoatednanoparticlesstudyofthebionanointerfaceinhumanplasma AT kennethadawson transferrincoatednanoparticlesstudyofthebionanointerfaceinhumanplasma |
_version_ |
1718423776316620800 |