Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking

Abstract The ability to move and maintain posture is critically dependent on motion and orientation information provided by the vestibular system. When this system delivers noisy or erred information it can, in some cases, be attenuated through habituation. Here we investigate whether multiple mecha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kelci B. Hannan, Makina K. Todd, Nicole J. Pearson, Patrick A. Forbes, Christopher J. Dakin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/24e1f2c9da4d449394827a3187c99b44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:24e1f2c9da4d449394827a3187c99b44
record_format dspace
spelling oai:doaj.org-article:24e1f2c9da4d449394827a3187c99b442021-12-02T14:27:59ZVestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking10.1038/s41598-021-87485-42045-2322https://doaj.org/article/24e1f2c9da4d449394827a3187c99b442021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87485-4https://doaj.org/toc/2045-2322Abstract The ability to move and maintain posture is critically dependent on motion and orientation information provided by the vestibular system. When this system delivers noisy or erred information it can, in some cases, be attenuated through habituation. Here we investigate whether multiple mechanisms of attenuation act to decrease vestibular gain due to noise added using supra-threshold random-waveform galvanic vestibular stimulation (GVS). Forty-five participants completed one of three conditions. Each condition consisted of two 4-min standing periods with stimulation surrounding a 1-h period of either walking with stimulation, walking without stimulation, or sitting quietly. An instrumented treadmill recorded horizontal forces at the feet during standing and walking. We quantified response attenuation to GVS by comparing vestibular stimulus-horizontal force gain between conditions. First stimulus exposure caused an 18% decrease in gain during the first 40 s of standing. Attenuation recommenced only when subjects walked with stimulation, resulting in a 38% decrease in gain over 60 min that did not transfer to standing following walking. The disparity in attenuation dynamics and absent carry over between standing and walking suggests that two mechanisms of attenuation, one associated with first exposure to the stimulus and another that is task specific, may act to decrease vestibulomotor gain.Kelci B. HannanMakina K. ToddNicole J. PearsonPatrick A. ForbesChristopher J. DakinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Kelci B. Hannan
Makina K. Todd
Nicole J. Pearson
Patrick A. Forbes
Christopher J. Dakin
Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking
description Abstract The ability to move and maintain posture is critically dependent on motion and orientation information provided by the vestibular system. When this system delivers noisy or erred information it can, in some cases, be attenuated through habituation. Here we investigate whether multiple mechanisms of attenuation act to decrease vestibular gain due to noise added using supra-threshold random-waveform galvanic vestibular stimulation (GVS). Forty-five participants completed one of three conditions. Each condition consisted of two 4-min standing periods with stimulation surrounding a 1-h period of either walking with stimulation, walking without stimulation, or sitting quietly. An instrumented treadmill recorded horizontal forces at the feet during standing and walking. We quantified response attenuation to GVS by comparing vestibular stimulus-horizontal force gain between conditions. First stimulus exposure caused an 18% decrease in gain during the first 40 s of standing. Attenuation recommenced only when subjects walked with stimulation, resulting in a 38% decrease in gain over 60 min that did not transfer to standing following walking. The disparity in attenuation dynamics and absent carry over between standing and walking suggests that two mechanisms of attenuation, one associated with first exposure to the stimulus and another that is task specific, may act to decrease vestibulomotor gain.
format article
author Kelci B. Hannan
Makina K. Todd
Nicole J. Pearson
Patrick A. Forbes
Christopher J. Dakin
author_facet Kelci B. Hannan
Makina K. Todd
Nicole J. Pearson
Patrick A. Forbes
Christopher J. Dakin
author_sort Kelci B. Hannan
title Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking
title_short Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking
title_full Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking
title_fullStr Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking
title_full_unstemmed Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking
title_sort vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/24e1f2c9da4d449394827a3187c99b44
work_keys_str_mv AT kelcibhannan vestibularattenuationtorandomwaveformgalvanicvestibularstimulationduringstandingandtreadmillwalking
AT makinaktodd vestibularattenuationtorandomwaveformgalvanicvestibularstimulationduringstandingandtreadmillwalking
AT nicolejpearson vestibularattenuationtorandomwaveformgalvanicvestibularstimulationduringstandingandtreadmillwalking
AT patrickaforbes vestibularattenuationtorandomwaveformgalvanicvestibularstimulationduringstandingandtreadmillwalking
AT christopherjdakin vestibularattenuationtorandomwaveformgalvanicvestibularstimulationduringstandingandtreadmillwalking
_version_ 1718391239886241792