Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition
Abstract Coulomb repulsion among conduction electrons in solids hinders their motion and leads to a rise in resistivity. A regime of electronic phase separation is expected at the first-order phase transition between a correlated metal and a paramagnetic Mott insulator, but remains unexplored experi...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24e36abeefd84211bb8579f149268ad1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:24e36abeefd84211bb8579f149268ad1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:24e36abeefd84211bb8579f149268ad12021-12-02T14:23:45ZLow-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition10.1038/s41535-020-00307-02397-4648https://doaj.org/article/24e36abeefd84211bb8579f149268ad12021-01-01T00:00:00Zhttps://doi.org/10.1038/s41535-020-00307-0https://doaj.org/toc/2397-4648Abstract Coulomb repulsion among conduction electrons in solids hinders their motion and leads to a rise in resistivity. A regime of electronic phase separation is expected at the first-order phase transition between a correlated metal and a paramagnetic Mott insulator, but remains unexplored experimentally as well as theoretically nearby T = 0. We approach this issue by assessing the complex permittivity via dielectric spectroscopy, which provides vivid mapping of the Mott transition and deep insight into its microscopic nature. Our experiments utilizing both physical pressure and chemical substitution consistently reveal a strong enhancement of the quasi-static dielectric constant ε 1 when correlations are tuned through the critical value. All experimental trends are captured by dynamical mean-field theory of the single-band Hubbard model supplemented by percolation theory. Our findings suggest a similar ’dielectric catastrophe’ in many other correlated materials and explain previous observations that were assigned to multiferroicity or ferroelectricity.A. PustogowR. RösslhuberY. TanE. UykurA. BöhmeM. WenzelY. SaitoA. LöhleR. HübnerA. KawamotoJ. A. SchlueterV. DobrosavljevićM. DresselNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 6, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 A. Pustogow R. Rösslhuber Y. Tan E. Uykur A. Böhme M. Wenzel Y. Saito A. Löhle R. Hübner A. Kawamoto J. A. Schlueter V. Dobrosavljević M. Dressel Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition |
description |
Abstract Coulomb repulsion among conduction electrons in solids hinders their motion and leads to a rise in resistivity. A regime of electronic phase separation is expected at the first-order phase transition between a correlated metal and a paramagnetic Mott insulator, but remains unexplored experimentally as well as theoretically nearby T = 0. We approach this issue by assessing the complex permittivity via dielectric spectroscopy, which provides vivid mapping of the Mott transition and deep insight into its microscopic nature. Our experiments utilizing both physical pressure and chemical substitution consistently reveal a strong enhancement of the quasi-static dielectric constant ε 1 when correlations are tuned through the critical value. All experimental trends are captured by dynamical mean-field theory of the single-band Hubbard model supplemented by percolation theory. Our findings suggest a similar ’dielectric catastrophe’ in many other correlated materials and explain previous observations that were assigned to multiferroicity or ferroelectricity. |
format |
article |
author |
A. Pustogow R. Rösslhuber Y. Tan E. Uykur A. Böhme M. Wenzel Y. Saito A. Löhle R. Hübner A. Kawamoto J. A. Schlueter V. Dobrosavljević M. Dressel |
author_facet |
A. Pustogow R. Rösslhuber Y. Tan E. Uykur A. Böhme M. Wenzel Y. Saito A. Löhle R. Hübner A. Kawamoto J. A. Schlueter V. Dobrosavljević M. Dressel |
author_sort |
A. Pustogow |
title |
Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition |
title_short |
Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition |
title_full |
Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition |
title_fullStr |
Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition |
title_full_unstemmed |
Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition |
title_sort |
low-temperature dielectric anomaly arising from electronic phase separation at the mott insulator-metal transition |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/24e36abeefd84211bb8579f149268ad1 |
work_keys_str_mv |
AT apustogow lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT rrosslhuber lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT ytan lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT euykur lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT abohme lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT mwenzel lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT ysaito lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT alohle lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT rhubner lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT akawamoto lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT jaschlueter lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT vdobrosavljevic lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition AT mdressel lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition |
_version_ |
1718391415438835712 |