Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition

Abstract Coulomb repulsion among conduction electrons in solids hinders their motion and leads to a rise in resistivity. A regime of electronic phase separation is expected at the first-order phase transition between a correlated metal and a paramagnetic Mott insulator, but remains unexplored experi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Pustogow, R. Rösslhuber, Y. Tan, E. Uykur, A. Böhme, M. Wenzel, Y. Saito, A. Löhle, R. Hübner, A. Kawamoto, J. A. Schlueter, V. Dobrosavljević, M. Dressel
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/24e36abeefd84211bb8579f149268ad1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:24e36abeefd84211bb8579f149268ad1
record_format dspace
spelling oai:doaj.org-article:24e36abeefd84211bb8579f149268ad12021-12-02T14:23:45ZLow-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition10.1038/s41535-020-00307-02397-4648https://doaj.org/article/24e36abeefd84211bb8579f149268ad12021-01-01T00:00:00Zhttps://doi.org/10.1038/s41535-020-00307-0https://doaj.org/toc/2397-4648Abstract Coulomb repulsion among conduction electrons in solids hinders their motion and leads to a rise in resistivity. A regime of electronic phase separation is expected at the first-order phase transition between a correlated metal and a paramagnetic Mott insulator, but remains unexplored experimentally as well as theoretically nearby T = 0. We approach this issue by assessing the complex permittivity via dielectric spectroscopy, which provides vivid mapping of the Mott transition and deep insight into its microscopic nature. Our experiments utilizing both physical pressure and chemical substitution consistently reveal a strong enhancement of the quasi-static dielectric constant ε 1 when correlations are tuned through the critical value. All experimental trends are captured by dynamical mean-field theory of the single-band Hubbard model supplemented by percolation theory. Our findings suggest a similar ’dielectric catastrophe’ in many other correlated materials and explain previous observations that were assigned to multiferroicity or ferroelectricity.A. PustogowR. RösslhuberY. TanE. UykurA. BöhmeM. WenzelY. SaitoA. LöhleR. HübnerA. KawamotoJ. A. SchlueterV. DobrosavljevićM. DresselNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 6, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
A. Pustogow
R. Rösslhuber
Y. Tan
E. Uykur
A. Böhme
M. Wenzel
Y. Saito
A. Löhle
R. Hübner
A. Kawamoto
J. A. Schlueter
V. Dobrosavljević
M. Dressel
Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition
description Abstract Coulomb repulsion among conduction electrons in solids hinders their motion and leads to a rise in resistivity. A regime of electronic phase separation is expected at the first-order phase transition between a correlated metal and a paramagnetic Mott insulator, but remains unexplored experimentally as well as theoretically nearby T = 0. We approach this issue by assessing the complex permittivity via dielectric spectroscopy, which provides vivid mapping of the Mott transition and deep insight into its microscopic nature. Our experiments utilizing both physical pressure and chemical substitution consistently reveal a strong enhancement of the quasi-static dielectric constant ε 1 when correlations are tuned through the critical value. All experimental trends are captured by dynamical mean-field theory of the single-band Hubbard model supplemented by percolation theory. Our findings suggest a similar ’dielectric catastrophe’ in many other correlated materials and explain previous observations that were assigned to multiferroicity or ferroelectricity.
format article
author A. Pustogow
R. Rösslhuber
Y. Tan
E. Uykur
A. Böhme
M. Wenzel
Y. Saito
A. Löhle
R. Hübner
A. Kawamoto
J. A. Schlueter
V. Dobrosavljević
M. Dressel
author_facet A. Pustogow
R. Rösslhuber
Y. Tan
E. Uykur
A. Böhme
M. Wenzel
Y. Saito
A. Löhle
R. Hübner
A. Kawamoto
J. A. Schlueter
V. Dobrosavljević
M. Dressel
author_sort A. Pustogow
title Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition
title_short Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition
title_full Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition
title_fullStr Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition
title_full_unstemmed Low-temperature dielectric anomaly arising from electronic phase separation at the Mott insulator-metal transition
title_sort low-temperature dielectric anomaly arising from electronic phase separation at the mott insulator-metal transition
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/24e36abeefd84211bb8579f149268ad1
work_keys_str_mv AT apustogow lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT rrosslhuber lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT ytan lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT euykur lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT abohme lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT mwenzel lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT ysaito lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT alohle lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT rhubner lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT akawamoto lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT jaschlueter lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT vdobrosavljevic lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
AT mdressel lowtemperaturedielectricanomalyarisingfromelectronicphaseseparationatthemottinsulatormetaltransition
_version_ 1718391415438835712