On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems
We analyze the proximal alternating linearized minimization algorithm (PALM) for solving non-smooth convex minimization problems where the objective function is a sum of a smooth convex function and block separable non-smooth extended real-valued convex functions. We prove a global non-asymptotic su...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24f455963618473180d6a3a1fc22c476 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We analyze the proximal alternating linearized minimization algorithm (PALM) for solving non-smooth convex minimization problems where the objective function is a sum of a smooth convex function and block separable non-smooth extended real-valued convex functions. We prove a global non-asymptotic sublinear rate of convergence for PALM. When the number of blocks is two, and the smooth coupling function is quadratic we present a fast version of PALM which is proven to share a global sublinear rate efficiency estimate improved by a squared root factor. Some numerical examples illustrate the potential benefits of the proposed schemes. |
---|