On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems

We analyze the proximal alternating linearized minimization algorithm (PALM) for solving non-smooth convex minimization problems where the objective function is a sum of a smooth convex function and block separable non-smooth extended real-valued convex functions. We prove a global non-asymptotic su...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ron Shefi, Marc Teboulle
Formato: article
Lenguaje:EN
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://doaj.org/article/24f455963618473180d6a3a1fc22c476
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We analyze the proximal alternating linearized minimization algorithm (PALM) for solving non-smooth convex minimization problems where the objective function is a sum of a smooth convex function and block separable non-smooth extended real-valued convex functions. We prove a global non-asymptotic sublinear rate of convergence for PALM. When the number of blocks is two, and the smooth coupling function is quadratic we present a fast version of PALM which is proven to share a global sublinear rate efficiency estimate improved by a squared root factor. Some numerical examples illustrate the potential benefits of the proposed schemes.