On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems
We analyze the proximal alternating linearized minimization algorithm (PALM) for solving non-smooth convex minimization problems where the objective function is a sum of a smooth convex function and block separable non-smooth extended real-valued convex functions. We prove a global non-asymptotic su...
Guardado en:
Autores principales: | Ron Shefi, Marc Teboulle |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24f455963618473180d6a3a1fc22c476 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Uncontrolled inexact information within bundle methods
por: Jérôme Malick, et al.
Publicado: (2017) -
An exact approach for the multi-constraint graph partitioning problem
por: Diego Recalde, et al.
Publicado: (2020) -
Dualization and discretization of linear-quadratic control problems with bang–bang solutions
por: Walter Alt, et al.
Publicado: (2016) -
A globally convergent algorithm for MPCC
por: Abdeslam Kadrani, et al.
Publicado: (2015) -
A comparison of four approaches from stochastic programming for large-scale unit-commitment
por: Wim van Ackooij
Publicado: (2017)