New fossils of Australopithecus sediba reveal a nearly complete lower back

Adaptations of the lower back to bipedalism are frequently discussed but infrequently demonstrated in early fossil hominins. Newly discovered lumbar vertebrae contribute to a near-complete lower back of Malapa Hominin 2 (MH2), offering additional insights into posture and locomotion in Australopithe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Scott A Williams, Thomas Cody Prang, Marc R Meyer, Thierra K Nalley, Renier Van Der Merwe, Christopher Yelverton, Daniel García-Martínez, Gabrielle A Russo, Kelly R Ostrofsky, Jeffrey Spear, Jennifer Eyre, Mark Grabowski, Shahed Nalla, Markus Bastir, Peter Schmid, Steven E Churchill, Lee R Berger
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/24f733bf10474bf1a1ac25d8b7928f3a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Adaptations of the lower back to bipedalism are frequently discussed but infrequently demonstrated in early fossil hominins. Newly discovered lumbar vertebrae contribute to a near-complete lower back of Malapa Hominin 2 (MH2), offering additional insights into posture and locomotion in Australopithecus sediba. We show that MH2 possessed a lower back consistent with lumbar lordosis and other adaptations to bipedalism, including an increase in the width of intervertebral articular facets from the upper to lower lumbar column (‘pyramidal configuration’). These results contrast with some recent work on lordosis in fossil hominins, where MH2 was argued to demonstrate no appreciable lordosis (‘hypolordosis’) similar to Neandertals. Our three-dimensional geometric morphometric (3D GM) analyses show that MH2’s nearly complete middle lumbar vertebra is human-like in overall shape but its vertebral body is somewhat intermediate in shape between modern humans and great apes. Additionally, it bears long, cranially and ventrally oriented costal (transverse) processes, implying powerful trunk musculature. We interpret this combination of features to indicate that A. sediba used its lower back in both bipedal and arboreal positional behaviors, as previously suggested based on multiple lines of evidence from other parts of the skeleton and reconstructed paleobiology of A. sediba.