Methodological quality of multivariate prognostic models for intracranial haemorrhages in intensive care units: a systematic review
Guardado en:
Autores principales: | Denis Frasca, Fanny Feuillet, Maxime Leger, Raphaël Cinotti, Yohann Foucher, Jeanne Simon-Pimmel, Laetitia Bodet-Contentin, Etienne Dantan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24fb4f55b9bb4e6ea5e8ffd8354fbf3c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
G-computation and machine learning for estimating the causal effects of binary exposure statuses on binary outcomes
por: Florent Le Borgne, et al.
Publicado: (2021) -
Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
por: Ji Young Lee, et al.
Publicado: (2020) -
G-computation, propensity score-based methods, and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study
por: Arthur Chatton, et al.
Publicado: (2020) -
Haemorrhagic Bowel Syndrome in Fattenig Pigs
por: Novotný Jaroslav, et al.
Publicado: (2016) -
CSF proteomics of patients with hydrocephalus and subarachnoid haemorrhage
por: Sokół Bartosz, et al.
Publicado: (2019)