Methodological quality of multivariate prognostic models for intracranial haemorrhages in intensive care units: a systematic review
Enregistré dans:
Auteurs principaux: | Denis Frasca, Fanny Feuillet, Maxime Leger, Raphaël Cinotti, Yohann Foucher, Jeanne Simon-Pimmel, Laetitia Bodet-Contentin, Etienne Dantan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMJ Publishing Group
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/24fb4f55b9bb4e6ea5e8ffd8354fbf3c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
G-computation and machine learning for estimating the causal effects of binary exposure statuses on binary outcomes
par: Florent Le Borgne, et autres
Publié: (2021) -
Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
par: Ji Young Lee, et autres
Publié: (2020) -
G-computation, propensity score-based methods, and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study
par: Arthur Chatton, et autres
Publié: (2020) -
Haemorrhagic Bowel Syndrome in Fattenig Pigs
par: Novotný Jaroslav, et autres
Publié: (2016) -
CSF proteomics of patients with hydrocephalus and subarachnoid haemorrhage
par: Sokół Bartosz, et autres
Publié: (2019)