Temporal Accelerators: Unleashing the Potential of Embedded FPGAs
When the complexity of a problem rises, its solution requires more hardware resources. A usual way to solve this is to use larger processors and add more memory. When using Field Programmable Gate-Arrays (FPGAs), which can instantiate arbitrary circuit designs, a larger, mo...
Enregistré dans:
Auteurs principaux: | Christopher Cichiwskyj, Gregor Schiele |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Graz University of Technology
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/24ff81af55b0430dbcd8f0816bee418a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Review on FPGA-Based Accelerators in Deep Learning
par: LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+
Publié: (2021) -
A bio-inspired adaptive model for search and selection in the Internet of Things environment
par: Soukaina Bouarourou, et autres
Publié: (2021) -
A Discourse Coherence Analysis Method Combining Sentence Embedding and Dimension Grid
par: Lanlan Jiang, et autres
Publié: (2021) -
Adaptive Similarity Function with Structural Features of Network Embedding for Missing Link Prediction
par: Chuanting Zhang, et autres
Publié: (2021) -
FinLex: An effective use of word embeddings for financial lexicon generation
par: Sanjiv R. Das, et autres
Publié: (2022)