Automated Bale Mapping Using Machine Learning and Photogrammetry
An automatic method of obtaining geographic coordinates of bales using monovision un-crewed aerial vehicle imagery was developed utilizing a data set of 300 images with a 20-megapixel resolution containing a total of 783 labeled bales of corn stover and soybean stubble. The relative performance of i...
Guardado en:
Autores principales: | William Yamada, Wei Zhao, Matthew Digman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/25079bd64b26463a8e819fa61495f003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Close Range Photogrammetry and Constructive Characterization of Masonry Gothic Vaults
por: Ginovart,Josep Lluis i, et al.
Publicado: (2014) -
Machine vision and applications
Publicado: (1988) -
The Segmented Colour Feature Extreme Learning Machine: Applications in Agricultural Robotics
por: Edmund J. Sadgrove, et al.
Publicado: (2021) -
Exploring impact and features of machine vision for progressive industry 4.0 culture
por: Mohd Javaid, et al.
Publicado: (2022) -
Recommendations for Improving Photo Quality in Close Range Photogrammetry, Exemplified in Hand Bones of Chimpanzees and Gorillas
por: Bucchi,Ana, et al.
Publicado: (2020)