Real-time atomistic observation of structural phase transformations in individual hafnia nanorods
The high-temperature tetragonal phase of HfO2 is technologically useful but difficult to stabilize at room temperature. Here, the authors observe in real-time the transformation of a HfO2nanorod from its room temperature to tetragonal phase, at 1000° less than its bulk temperature, suggesting that s...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/250efa8b7c7c4ebaa719c20c8e276343 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The high-temperature tetragonal phase of HfO2 is technologically useful but difficult to stabilize at room temperature. Here, the authors observe in real-time the transformation of a HfO2nanorod from its room temperature to tetragonal phase, at 1000° less than its bulk temperature, suggesting that size confinement may kinetically trap this phase. |
---|