Sensitive detection of rare disease-associated cell subsets via representation learning
While rare cell subpopulations frequently make the difference between health and disease, their detection remains a challenge. Here, the authors devise CellCnn, a representation learning approach to detecting such rare cell populations from high-dimensional single cell data, and, among other example...
Guardado en:
Autores principales: | Eirini Arvaniti, Manfred Claassen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/252419b4dcba439fba6a1a58ee8e5a66 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Automated Gleason grading of prostate cancer tissue microarrays via deep learning
por: Eirini Arvaniti, et al.
Publicado: (2021) -
Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.
por: Andrew Cron, et al.
Publicado: (2013) -
Detecting operons in bacterial genomes via visual representation learning
por: Rida Assaf, et al.
Publicado: (2021) -
Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data.
por: Andreas Kopf, et al.
Publicado: (2021) -
Rapid and sensitive detection of rare cancer cells by the coupling of immunomagnetic nanoparticle separation with ELISA analysis
por: Ko FH, et al.
Publicado: (2012)