Predicting Spatiotemporal Demand of Dockless E-Scooter Sharing Services with a Masked Fully Convolutional Network
Dockless electric scooters (e-scooter) have emerged as a green alternative to automobiles and a solution to the first- and last-mile problems. Demand anticipation, or being able to accurately predict spatiotemporal demand of e-scooter usage, is one supply–demand balancing strategy. In this paper, we...
Guardado en:
Autores principales: | Santi Phithakkitnukooon, Karn Patanukhom, Merkebe Getachew Demissie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/25383b616feb4c89bd22128ffb8532f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Micromobility, Macro Goals: Aligning scooter parking policy with broader city objectives
por: Anne Brown
Publicado: (2021) -
The (digital) medium of mobility is the message: Examining the influence of e-scooter mobile app perceptions on e-scooter use intent
por: Rabindra Ratan, et al.
Publicado: (2021) -
A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage
por: Maximilian Heumann, et al.
Publicado: (2021) -
Where Have Shared E-Scooters Taken Us So Far? A Review of Mobility Patterns, Usage Frequency, and Personas
por: Samira Dibaj, et al.
Publicado: (2021) -
THE SOURCES OF COMPETITIVE ADVANTAGES OF ELECTRIC SCOOTER SHARING SERVICES
por: S. V. Ilkevich
Publicado: (2019)