Cross-sectional analysis of the Parkinson’s disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life
Abstract Growing evidence suggests that non-motor symptoms (NMS) in Parkinson’s disease (PD) have differential progression patterns that have a different natural history from motor progression and may be geographically influenced. We conducted a cross-sectional analysis of 1607 PD patients of whom 1...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/253a5f52cf804525a1285587c2b2f3ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:253a5f52cf804525a1285587c2b2f3ff |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:253a5f52cf804525a1285587c2b2f3ff2021-12-02T14:29:03ZCross-sectional analysis of the Parkinson’s disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life10.1038/s41598-021-88651-42045-2322https://doaj.org/article/253a5f52cf804525a1285587c2b2f3ff2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88651-4https://doaj.org/toc/2045-2322Abstract Growing evidence suggests that non-motor symptoms (NMS) in Parkinson’s disease (PD) have differential progression patterns that have a different natural history from motor progression and may be geographically influenced. We conducted a cross-sectional analysis of 1607 PD patients of whom 1327 were from Europe, 208 from the Americas, and 72 from Asia. The primary objective was to assess baseline non-motor burden, defined by Non-Motor Symptoms Scale (NMSS) total scores. Other aims included identifying the factors predicting quality of life, differences in non-motor burden between drug-naïve and non-drug-naïve treated patients, and non-motor phenotypes across different geographical locations. Mean age was 65.9 ± 10.8 years, mean disease duration 6.3 ± 5.6 years, median Hoehn and Yahr stage was 2 (2–3), and 64.2% were male. In this cohort, mean NMSS scores were 46.7 ± 37.2. Differences in non-motor burden and patterns differed significantly between drug-naïve participants, those with a disease duration of less than five years, and those with a duration of five years or over (p ≤ 0.018). Significant differences were observed in geographical distribution (NMSS Europe: 46.4 ± 36.3; Americas: 55.3 ± 42.8; Asia: 26.6 ± 25.1; p < 0.001), with differences in sleep/fatigue, urinary, sexual, and miscellaneous domains (p ≤ 0.020). The best predictor of quality of life was the mood/apathy domain (β = 0.308, p < 0.001). This global study reveals that while non-motor symptoms are globally present with severe NMS burden impacting quality of life in PD, there appear to be differences depending on disease duration and geographical distribution.Daniel J. van WamelenAnna SauerbierValentina LetaCarmen Rodriguez-BlazquezCristian Falup-PecurariuMayela Rodriguez‐ViolanteAlexandra RizosY. TsuboiVinod MettaRoongroj BhidayasiriKalyan BhattacharyaRupam BorgohainL. K. PrashanthRaymond RosalesSimon LewisVictor FungMadhuri BehariVinay GoyalAsha KishoreSantiago Perez LloretPablo Martinez-MartinK. Ray ChaudhuriNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Daniel J. van Wamelen Anna Sauerbier Valentina Leta Carmen Rodriguez-Blazquez Cristian Falup-Pecurariu Mayela Rodriguez‐Violante Alexandra Rizos Y. Tsuboi Vinod Metta Roongroj Bhidayasiri Kalyan Bhattacharya Rupam Borgohain L. K. Prashanth Raymond Rosales Simon Lewis Victor Fung Madhuri Behari Vinay Goyal Asha Kishore Santiago Perez Lloret Pablo Martinez-Martin K. Ray Chaudhuri Cross-sectional analysis of the Parkinson’s disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life |
description |
Abstract Growing evidence suggests that non-motor symptoms (NMS) in Parkinson’s disease (PD) have differential progression patterns that have a different natural history from motor progression and may be geographically influenced. We conducted a cross-sectional analysis of 1607 PD patients of whom 1327 were from Europe, 208 from the Americas, and 72 from Asia. The primary objective was to assess baseline non-motor burden, defined by Non-Motor Symptoms Scale (NMSS) total scores. Other aims included identifying the factors predicting quality of life, differences in non-motor burden between drug-naïve and non-drug-naïve treated patients, and non-motor phenotypes across different geographical locations. Mean age was 65.9 ± 10.8 years, mean disease duration 6.3 ± 5.6 years, median Hoehn and Yahr stage was 2 (2–3), and 64.2% were male. In this cohort, mean NMSS scores were 46.7 ± 37.2. Differences in non-motor burden and patterns differed significantly between drug-naïve participants, those with a disease duration of less than five years, and those with a duration of five years or over (p ≤ 0.018). Significant differences were observed in geographical distribution (NMSS Europe: 46.4 ± 36.3; Americas: 55.3 ± 42.8; Asia: 26.6 ± 25.1; p < 0.001), with differences in sleep/fatigue, urinary, sexual, and miscellaneous domains (p ≤ 0.020). The best predictor of quality of life was the mood/apathy domain (β = 0.308, p < 0.001). This global study reveals that while non-motor symptoms are globally present with severe NMS burden impacting quality of life in PD, there appear to be differences depending on disease duration and geographical distribution. |
format |
article |
author |
Daniel J. van Wamelen Anna Sauerbier Valentina Leta Carmen Rodriguez-Blazquez Cristian Falup-Pecurariu Mayela Rodriguez‐Violante Alexandra Rizos Y. Tsuboi Vinod Metta Roongroj Bhidayasiri Kalyan Bhattacharya Rupam Borgohain L. K. Prashanth Raymond Rosales Simon Lewis Victor Fung Madhuri Behari Vinay Goyal Asha Kishore Santiago Perez Lloret Pablo Martinez-Martin K. Ray Chaudhuri |
author_facet |
Daniel J. van Wamelen Anna Sauerbier Valentina Leta Carmen Rodriguez-Blazquez Cristian Falup-Pecurariu Mayela Rodriguez‐Violante Alexandra Rizos Y. Tsuboi Vinod Metta Roongroj Bhidayasiri Kalyan Bhattacharya Rupam Borgohain L. K. Prashanth Raymond Rosales Simon Lewis Victor Fung Madhuri Behari Vinay Goyal Asha Kishore Santiago Perez Lloret Pablo Martinez-Martin K. Ray Chaudhuri |
author_sort |
Daniel J. van Wamelen |
title |
Cross-sectional analysis of the Parkinson’s disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life |
title_short |
Cross-sectional analysis of the Parkinson’s disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life |
title_full |
Cross-sectional analysis of the Parkinson’s disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life |
title_fullStr |
Cross-sectional analysis of the Parkinson’s disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life |
title_full_unstemmed |
Cross-sectional analysis of the Parkinson’s disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life |
title_sort |
cross-sectional analysis of the parkinson’s disease non-motor international longitudinal study baseline non-motor characteristics, geographical distribution and impact on quality of life |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/253a5f52cf804525a1285587c2b2f3ff |
work_keys_str_mv |
AT danieljvanwamelen crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT annasauerbier crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT valentinaleta crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT carmenrodriguezblazquez crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT cristianfaluppecurariu crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT mayelarodriguezviolante crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT alexandrarizos crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT ytsuboi crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT vinodmetta crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT roongrojbhidayasiri crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT kalyanbhattacharya crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT rupamborgohain crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT lkprashanth crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT raymondrosales crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT simonlewis crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT victorfung crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT madhuribehari crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT vinaygoyal crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT ashakishore crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT santiagoperezlloret crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT pablomartinezmartin crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife AT kraychaudhuri crosssectionalanalysisoftheparkinsonsdiseasenonmotorinternationallongitudinalstudybaselinenonmotorcharacteristicsgeographicaldistributionandimpactonqualityoflife |
_version_ |
1718391240447229952 |