An evolutionary Nelder–Mead slime mould algorithm with random learning for efficient design of photovoltaic models
The efficiency of solar cells in converting solar energy into electrical energy can be improved by efficient and accurate solar photovoltaic cell modelling. However, the key to solar photovoltaic cell modelling is the accuracy of the solar cell parameters. Therefore, to obtain the unknown parameters...
Enregistré dans:
Auteurs principaux: | Xuemeng Weng, Ali Asghar Heidari, Guoxi Liang, Huiling Chen, Xinsheng Ma |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2543b7d6bb364b38bfdab155ee231fe3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Optimal reactive power dispatch using an improved slime mould algorithm
par: Yuanye Wei, et autres
Publié: (2021) -
A method for magnetocardiography functional localization based on boundary element method and Nelder–Mead simplex algorithm
par: Zhihong Lu, et autres
Publié: (2021) -
SLIME MOULD ALGORITHM FOR PRACTICAL OPTIMAL POWER FLOW SOLUTIONS INCORPORATING STOCHASTIC WIND POWER AND STATIC VAR COMPENSATOR DEVICE
par: Ramzi Kouadri, et autres
Publié: (2020) -
Optimización de pórticos planos de hormigón armado utilizando una hibridación de algoritmos genéticos y el algoritmo Nelder-Mead
par: Negrin,Iván A., et autres
Publié: (2019) -
A Nelder–Mead algorithm-based inverse transient analysis for leak detection and sizing in a single pipe
par: Oussama Choura, et autres
Publié: (2021)