Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements
<p>Deriving large-scale and high-quality precipitation products from satellite remote-sensing spectral data is always challenging in quantitative precipitation estimation (QPE), and limited studies have been conducted even using China's latest Fengyun-4A (FY-4A) geostationary satellite. T...
Guardado en:
Autores principales: | X. Li, Y. Yang, J. Mi, X. Bi, Y. Zhao, Z. Huang, C. Liu, L. Zong, W. Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/254c2f80c54043a69ef84571b60fd733 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ground mobile observation system for measuring multisurface microwave emissivity
por: W. He, et al.
Publicado: (2021) -
Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan
por: H. Iwai, et al.
Publicado: (2021) -
Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry
por: X. Xu, et al.
Publicado: (2021) -
Diurnal variability of stratospheric column NO<sub>2</sub> measured using direct solar and lunar spectra over Table Mountain, California (34.38° N)
por: K.-F. Li, et al.
Publicado: (2021) -
A minimum curvature algorithm for tomographic reconstruction of atmospheric chemicals based on optical remote sensing
por: S. Li, et al.
Publicado: (2021)