Use of recycled carbon staple fibers in an advanced thermoforming process and analysis of its crash performance
Carbon fiber reinforced polymer composites (CFRPC) are one of the promising lightweight materials in car production and show excellent energy absorption potential. In this paper, crash absorbers made of recycled carbon staple fibers (rCSF) and polyamide 6 are manufactured by an advanced thermoformin...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/255c046bf05c490ca293cde66be86b4b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Carbon fiber reinforced polymer composites (CFRPC) are one of the promising lightweight materials in car production and show excellent energy absorption potential. In this paper, crash absorbers made of recycled carbon staple fibers (rCSF) and polyamide 6 are manufactured by an advanced thermoforming process in a multi-segment mold. The innovative wave design is meant to prevent the crash absorber from unintended crushing effects like bending or buckling and easy to manufacture by the investigated process. The formed crash absorbers were tested in a horizontal test rig by using a crash sled with an impact energy of 1925 J. The rCSF based crash absorbers feature a specific energy absorption (SEA) of 58.12 ± 0.58 J/g. Also, the standard deviation of the rCSF crash absorbers is remarkably low (1.0%). Thus, rCSF based crash absorbers represent a viable alternative to crash absorbers made of virgin fibers. |
---|