Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
Abstract As the COVID-19 pandemic is challenging healthcare systems worldwide, early identification of patients with a high risk of complication is crucial. We present a prognostic model predicting critical state within 28 days following COVID-19 diagnosis trained on data from US electronic health r...
Guardado en:
Autores principales: | Mike D. Rinderknecht, Yannick Klopfenstein |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/25648bc749dd41e6a0c177a1bd17e663 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction
por: Laila Rasmy, et al.
Publicado: (2021) -
Impact of an electronic medical record-based appointment order on outpatient cardiology follow-up after hospital discharge
por: Kartik S. Telukuntla, et al.
Publicado: (2021) -
Predicting COVID-19 mortality with electronic medical records
por: Hossein Estiri, et al.
Publicado: (2021) -
Scalable and accurate deep learning with electronic health records
por: Alvin Rajkomar, et al.
Publicado: (2018) -
Real-time clinician text feeds from electronic health records
por: James T. H. Teo, et al.
Publicado: (2021)