In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI

Michael Friebe,1 Juan Sanchez,1 Sathish Balakrishnan,1 Alfredo Illanes,1 Yeshaswini Nagaraj,2 Robert Odenbach,1 Marwah Matooq,1 Gabriele Krombach,3 Michael Vogele,4 Axel Boese1 1Chair of Intelligent Catheter, Otto-von-Guericke-University, Magdeburg, Germany; 2University of Groningen, University Medi...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Friebe M, Sanchez J, Balakrishnan S, Illanes A, Nagaraj Y, Odenbach R, Matooq M, Krombach G, Vogele M, Boese A
Format: article
Langue:EN
Publié: Dove Medical Press 2018
Sujets:
Accès en ligne:https://doaj.org/article/2585f2867a444d3f8a39b897a2574dbd
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id oai:doaj.org-article:2585f2867a444d3f8a39b897a2574dbd
record_format dspace
spelling oai:doaj.org-article:2585f2867a444d3f8a39b897a2574dbd2021-12-02T05:40:43ZIn-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI1179-1470https://doaj.org/article/2585f2867a444d3f8a39b897a2574dbd2018-03-01T00:00:00Zhttps://www.dovepress.com/in-room-ultrasound-fusion-combined-with-fully-compatible-3d-printed-ho-peer-reviewed-article-MDERhttps://doaj.org/toc/1179-1470Michael Friebe,1 Juan Sanchez,1 Sathish Balakrishnan,1 Alfredo Illanes,1 Yeshaswini Nagaraj,2 Robert Odenbach,1 Marwah Matooq,1 Gabriele Krombach,3 Michael Vogele,4 Axel Boese1 1Chair of Intelligent Catheter, Otto-von-Guericke-University, Magdeburg, Germany; 2University of Groningen, University Medical Center Groningen, Center for Medical Imaging North East Netherlands, Groningen, the Netherlands; 3Universitätsklinikum Giessen, Radiologische Klinik, Giessen, Germany; 4Interventional Systems GmbH, Kitzbühel, Austria Abstract: There is no real need to discuss the potential advantages – mainly the excellent soft tissue contrast, nonionizing radiation, flow, and molecular information – of magnetic resonance imaging (MRI) as an intraoperative diagnosis and therapy system particularly for neurological applications and oncological therapies. Difficult patient access in conventional horizontal-field superconductive magnets, very high investment and operational expenses, and the need for special nonferromagnetic therapy tools have however prevented the widespread use of MRI as imaging and guidance tool for therapy purposes. The interventional use of MRI systems follows for the last 20+ years the strategy to use standard diagnostic systems and add more or less complicated and expensive components (eg, MRI-compatible robotic systems, specially shielded in-room monitors, dedicated tools and devices made from low-susceptibility materials, etc) to overcome the difficulties in the therapy process. We are proposing to rethink that approach using an in-room portable ultrasound (US) system that can be safely operated till 1 m away from the opening of a 3T imaging system. The live US images can be tracked using an optical inside–out approach adding a camera to the US probe in combination with optical reference markers to allow direct fusion with the MRI images inside the MRI suite. This leads to a comfortable US-guided intervention and excellent patient access directly on the MRI patient bed. This was combined with an entirely mechanical MRI-compatible 7 degrees of freedom holding arm concept, which shows that this test environment is a different way to create a cost-efficient and effective setup that combines the advantages of MRI and US by largely avoiding the drawbacks of current interventional MRI concepts. Keywords: interventional MRI, fusion imaging, ultrasound/MRI hybrid, MRI-compatible, medical holding arm ultrasound guided MRI interventionFriebe MSanchez JBalakrishnan SIllanes ANagaraj YOdenbach RMatooq MKrombach GVogele MBoese ADove Medical PressarticleInterventional MRIFusion ImagingUltrasound/MRI HybridMRI compatibleMedical Holding Arm Ultrasound Guided MRI InterventionMedical technologyR855-855.5ENMedical Devices: Evidence and Research, Vol Volume 11, Pp 77-85 (2018)
institution DOAJ
collection DOAJ
language EN
topic Interventional MRI
Fusion Imaging
Ultrasound/MRI Hybrid
MRI compatible
Medical Holding Arm Ultrasound Guided MRI Intervention
Medical technology
R855-855.5
spellingShingle Interventional MRI
Fusion Imaging
Ultrasound/MRI Hybrid
MRI compatible
Medical Holding Arm Ultrasound Guided MRI Intervention
Medical technology
R855-855.5
Friebe M
Sanchez J
Balakrishnan S
Illanes A
Nagaraj Y
Odenbach R
Matooq M
Krombach G
Vogele M
Boese A
In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI
description Michael Friebe,1 Juan Sanchez,1 Sathish Balakrishnan,1 Alfredo Illanes,1 Yeshaswini Nagaraj,2 Robert Odenbach,1 Marwah Matooq,1 Gabriele Krombach,3 Michael Vogele,4 Axel Boese1 1Chair of Intelligent Catheter, Otto-von-Guericke-University, Magdeburg, Germany; 2University of Groningen, University Medical Center Groningen, Center for Medical Imaging North East Netherlands, Groningen, the Netherlands; 3Universitätsklinikum Giessen, Radiologische Klinik, Giessen, Germany; 4Interventional Systems GmbH, Kitzbühel, Austria Abstract: There is no real need to discuss the potential advantages – mainly the excellent soft tissue contrast, nonionizing radiation, flow, and molecular information – of magnetic resonance imaging (MRI) as an intraoperative diagnosis and therapy system particularly for neurological applications and oncological therapies. Difficult patient access in conventional horizontal-field superconductive magnets, very high investment and operational expenses, and the need for special nonferromagnetic therapy tools have however prevented the widespread use of MRI as imaging and guidance tool for therapy purposes. The interventional use of MRI systems follows for the last 20+ years the strategy to use standard diagnostic systems and add more or less complicated and expensive components (eg, MRI-compatible robotic systems, specially shielded in-room monitors, dedicated tools and devices made from low-susceptibility materials, etc) to overcome the difficulties in the therapy process. We are proposing to rethink that approach using an in-room portable ultrasound (US) system that can be safely operated till 1 m away from the opening of a 3T imaging system. The live US images can be tracked using an optical inside–out approach adding a camera to the US probe in combination with optical reference markers to allow direct fusion with the MRI images inside the MRI suite. This leads to a comfortable US-guided intervention and excellent patient access directly on the MRI patient bed. This was combined with an entirely mechanical MRI-compatible 7 degrees of freedom holding arm concept, which shows that this test environment is a different way to create a cost-efficient and effective setup that combines the advantages of MRI and US by largely avoiding the drawbacks of current interventional MRI concepts. Keywords: interventional MRI, fusion imaging, ultrasound/MRI hybrid, MRI-compatible, medical holding arm ultrasound guided MRI intervention
format article
author Friebe M
Sanchez J
Balakrishnan S
Illanes A
Nagaraj Y
Odenbach R
Matooq M
Krombach G
Vogele M
Boese A
author_facet Friebe M
Sanchez J
Balakrishnan S
Illanes A
Nagaraj Y
Odenbach R
Matooq M
Krombach G
Vogele M
Boese A
author_sort Friebe M
title In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI
title_short In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI
title_full In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI
title_fullStr In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI
title_full_unstemmed In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI
title_sort in-room ultrasound fusion combined with fully compatible 3d-printed holding arm – rethinking interventional mri
publisher Dove Medical Press
publishDate 2018
url https://doaj.org/article/2585f2867a444d3f8a39b897a2574dbd
work_keys_str_mv AT friebem inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
AT sanchezj inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
AT balakrishnans inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
AT illanesa inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
AT nagarajy inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
AT odenbachr inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
AT matooqm inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
AT krombachg inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
AT vogelem inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
AT boesea inroomultrasoundfusioncombinedwithfullycompatible3dprintedholdingarmndashrethinkinginterventionalmri
_version_ 1718400282940932096