Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity.
Cell assemblies are thought to be the substrate of memory in the brain. Theoretical studies have previously shown that assemblies can be formed in networks with multiple types of plasticity. But how exactly they are formed and how they encode information is yet to be fully understood. One possibilit...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2597f723c5824e3f8c81a25c51cc1f2b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2597f723c5824e3f8c81a25c51cc1f2b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2597f723c5824e3f8c81a25c51cc1f2b2021-12-02T19:58:12ZMemories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity.1553-734X1553-735810.1371/journal.pcbi.1009593https://doaj.org/article/2597f723c5824e3f8c81a25c51cc1f2b2021-11-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009593https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Cell assemblies are thought to be the substrate of memory in the brain. Theoretical studies have previously shown that assemblies can be formed in networks with multiple types of plasticity. But how exactly they are formed and how they encode information is yet to be fully understood. One possibility is that memories are stored in silent assemblies. Here we used a computational model to study the formation of silent assemblies in a network of spiking neurons with excitatory and inhibitory plasticity. We found that even though the formed assemblies were silent in terms of mean firing rate, they had an increased coefficient of variation of inter-spike intervals. We also found that this spiking irregularity could be read out with support of short-term plasticity, and that it could contribute to the longevity of memories.Júlia V GallinaroClaudia ClopathPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 11, p e1009593 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Júlia V Gallinaro Claudia Clopath Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity. |
description |
Cell assemblies are thought to be the substrate of memory in the brain. Theoretical studies have previously shown that assemblies can be formed in networks with multiple types of plasticity. But how exactly they are formed and how they encode information is yet to be fully understood. One possibility is that memories are stored in silent assemblies. Here we used a computational model to study the formation of silent assemblies in a network of spiking neurons with excitatory and inhibitory plasticity. We found that even though the formed assemblies were silent in terms of mean firing rate, they had an increased coefficient of variation of inter-spike intervals. We also found that this spiking irregularity could be read out with support of short-term plasticity, and that it could contribute to the longevity of memories. |
format |
article |
author |
Júlia V Gallinaro Claudia Clopath |
author_facet |
Júlia V Gallinaro Claudia Clopath |
author_sort |
Júlia V Gallinaro |
title |
Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity. |
title_short |
Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity. |
title_full |
Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity. |
title_fullStr |
Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity. |
title_full_unstemmed |
Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity. |
title_sort |
memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/2597f723c5824e3f8c81a25c51cc1f2b |
work_keys_str_mv |
AT juliavgallinaro memoriesinanetworkwithexcitatoryandinhibitoryplasticityareencodedinthespikingirregularity AT claudiaclopath memoriesinanetworkwithexcitatoryandinhibitoryplasticityareencodedinthespikingirregularity |
_version_ |
1718375767685988352 |