Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization
Multivariable Mendelian randomization (MR) extends the standard MR framework to consider multiple risk factors in a single model. Here, Zuber et al. propose MR-BMA, a Bayesian variable selection approach to identify the likely causal determinants of a disease from many candidate risk factors as for...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/25ac00d0332e4bc4a929fc5680c24f8b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Multivariable Mendelian randomization (MR) extends the standard MR framework to consider multiple risk factors in a single model. Here, Zuber et al. propose MR-BMA, a Bayesian variable selection approach to identify the likely causal determinants of a disease from many candidate risk factors as for example high-throughput data sets. |
---|