Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization
Multivariable Mendelian randomization (MR) extends the standard MR framework to consider multiple risk factors in a single model. Here, Zuber et al. propose MR-BMA, a Bayesian variable selection approach to identify the likely causal determinants of a disease from many candidate risk factors as for...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/25ac00d0332e4bc4a929fc5680c24f8b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:25ac00d0332e4bc4a929fc5680c24f8b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:25ac00d0332e4bc4a929fc5680c24f8b2021-12-02T16:56:33ZSelecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization10.1038/s41467-019-13870-32041-1723https://doaj.org/article/25ac00d0332e4bc4a929fc5680c24f8b2020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13870-3https://doaj.org/toc/2041-1723Multivariable Mendelian randomization (MR) extends the standard MR framework to consider multiple risk factors in a single model. Here, Zuber et al. propose MR-BMA, a Bayesian variable selection approach to identify the likely causal determinants of a disease from many candidate risk factors as for example high-throughput data sets.Verena ZuberJohanna Maria ColijnCaroline KlaverStephen BurgessNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Verena Zuber Johanna Maria Colijn Caroline Klaver Stephen Burgess Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization |
description |
Multivariable Mendelian randomization (MR) extends the standard MR framework to consider multiple risk factors in a single model. Here, Zuber et al. propose MR-BMA, a Bayesian variable selection approach to identify the likely causal determinants of a disease from many candidate risk factors as for example high-throughput data sets. |
format |
article |
author |
Verena Zuber Johanna Maria Colijn Caroline Klaver Stephen Burgess |
author_facet |
Verena Zuber Johanna Maria Colijn Caroline Klaver Stephen Burgess |
author_sort |
Verena Zuber |
title |
Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization |
title_short |
Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization |
title_full |
Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization |
title_fullStr |
Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization |
title_full_unstemmed |
Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization |
title_sort |
selecting likely causal risk factors from high-throughput experiments using multivariable mendelian randomization |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/25ac00d0332e4bc4a929fc5680c24f8b |
work_keys_str_mv |
AT verenazuber selectinglikelycausalriskfactorsfromhighthroughputexperimentsusingmultivariablemendelianrandomization AT johannamariacolijn selectinglikelycausalriskfactorsfromhighthroughputexperimentsusingmultivariablemendelianrandomization AT carolineklaver selectinglikelycausalriskfactorsfromhighthroughputexperimentsusingmultivariablemendelianrandomization AT stephenburgess selectinglikelycausalriskfactorsfromhighthroughputexperimentsusingmultivariablemendelianrandomization |
_version_ |
1718382787261628416 |