Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization

Multivariable Mendelian randomization (MR) extends the standard MR framework to consider multiple risk factors in a single model. Here, Zuber et al. propose MR-BMA, a Bayesian variable selection approach to identify the likely causal determinants of a disease from many candidate risk factors as for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Verena Zuber, Johanna Maria Colijn, Caroline Klaver, Stephen Burgess
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/25ac00d0332e4bc4a929fc5680c24f8b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:25ac00d0332e4bc4a929fc5680c24f8b
record_format dspace
spelling oai:doaj.org-article:25ac00d0332e4bc4a929fc5680c24f8b2021-12-02T16:56:33ZSelecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization10.1038/s41467-019-13870-32041-1723https://doaj.org/article/25ac00d0332e4bc4a929fc5680c24f8b2020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13870-3https://doaj.org/toc/2041-1723Multivariable Mendelian randomization (MR) extends the standard MR framework to consider multiple risk factors in a single model. Here, Zuber et al. propose MR-BMA, a Bayesian variable selection approach to identify the likely causal determinants of a disease from many candidate risk factors as for example high-throughput data sets.Verena ZuberJohanna Maria ColijnCaroline KlaverStephen BurgessNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Verena Zuber
Johanna Maria Colijn
Caroline Klaver
Stephen Burgess
Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization
description Multivariable Mendelian randomization (MR) extends the standard MR framework to consider multiple risk factors in a single model. Here, Zuber et al. propose MR-BMA, a Bayesian variable selection approach to identify the likely causal determinants of a disease from many candidate risk factors as for example high-throughput data sets.
format article
author Verena Zuber
Johanna Maria Colijn
Caroline Klaver
Stephen Burgess
author_facet Verena Zuber
Johanna Maria Colijn
Caroline Klaver
Stephen Burgess
author_sort Verena Zuber
title Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization
title_short Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization
title_full Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization
title_fullStr Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization
title_full_unstemmed Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization
title_sort selecting likely causal risk factors from high-throughput experiments using multivariable mendelian randomization
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/25ac00d0332e4bc4a929fc5680c24f8b
work_keys_str_mv AT verenazuber selectinglikelycausalriskfactorsfromhighthroughputexperimentsusingmultivariablemendelianrandomization
AT johannamariacolijn selectinglikelycausalriskfactorsfromhighthroughputexperimentsusingmultivariablemendelianrandomization
AT carolineklaver selectinglikelycausalriskfactorsfromhighthroughputexperimentsusingmultivariablemendelianrandomization
AT stephenburgess selectinglikelycausalriskfactorsfromhighthroughputexperimentsusingmultivariablemendelianrandomization
_version_ 1718382787261628416