Geometric Heterogeneity of Continental Shale in the Yanchang Formation, Southern Ordos Basin, China
Abstract Favorable prospects for the exploration of shale gas have been demonstrated in the Ordos Basin, China. Outcrop and core observations indicate that there are abundant laminas in the shale strata, which exert a great influence on hydro-fracture propagation, gas storage and fluid flow. In this...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/25add96e2f91470b923fc96990fc6023 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Favorable prospects for the exploration of shale gas have been demonstrated in the Ordos Basin, China. Outcrop and core observations indicate that there are abundant laminas in the shale strata, which exert a great influence on hydro-fracture propagation, gas storage and fluid flow. In this study, the continental shale of the Chang 72 Member, collected from the south of Ordos Basin, was investigated to characterize the geometric heterogeneity. Laminas at multiple scales were observed and measured using conventional logging, borehole TV, core analysis, scanning electron microscopy, and the Particle and Crack Analysis System. These measurement tools correspond to the meter scale, decimeter scale, centimeter scale, millimeter scale and ten-micrometer scale, respectively, with measured thicknesses of 2.26 m, 2.09 dm, 1.70 cm, 1.48 mm and 11.70 μm, respectively. Fractal theory was used to analyze the power exponent distribution of the lamina thickness, with a resulting fractal dimension of 1.06. Finally, a geometric heterogeneity model was proposed for the Upper Triassic Yanchang Formation in the study area and verified by a modeled thickness of 26.30 m for the Chang 72 Member at the 10-m scale. The model facilitates cross-scale analysis and provides parameter guidance for heterogeneity characterization in the numerical simulation and model test of the shale gas reservoir. |
---|