Decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence

Abstract The use of sodium-glucose co-transporter 2 inhibitors to treat heart failure with preserved ejection fraction (HFpEF) is under investigation in ongoing clinical trials, but the exact mechanism of action is unclear. Here we aimed to use artificial intelligence (AI) to characterize the mechan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Antoni Bayes-Genis, Oriol Iborra-Egea, Giosafat Spitaleri, Mar Domingo, Elena Revuelta-López, Pau Codina, Germán Cediel, Evelyn Santiago-Vacas, Adriana Cserkóová, Domingo Pascual-Figal, Julio Núñez, Josep Lupón
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/25cc0ca35f374ccaaf5bcf8cbf852ee7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:25cc0ca35f374ccaaf5bcf8cbf852ee7
record_format dspace
spelling oai:doaj.org-article:25cc0ca35f374ccaaf5bcf8cbf852ee72021-12-02T15:03:07ZDecoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence10.1038/s41598-021-91546-z2045-2322https://doaj.org/article/25cc0ca35f374ccaaf5bcf8cbf852ee72021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91546-zhttps://doaj.org/toc/2045-2322Abstract The use of sodium-glucose co-transporter 2 inhibitors to treat heart failure with preserved ejection fraction (HFpEF) is under investigation in ongoing clinical trials, but the exact mechanism of action is unclear. Here we aimed to use artificial intelligence (AI) to characterize the mechanism of action of empagliflozin in HFpEF at the molecular level. We retrieved information regarding HFpEF pathophysiological motifs and differentially expressed genes/proteins, together with empagliflozin target information and bioflags, from specialized publicly available databases. Artificial neural networks and deep learning AI were used to model the molecular effects of empagliflozin in HFpEF. The model predicted that empagliflozin could reverse 59% of the protein alterations found in HFpEF. The effects of empagliflozin in HFpEF appeared to be predominantly mediated by inhibition of NHE1 (Na+/H+ exchanger 1), with SGLT2 playing a less prominent role. The elucidated molecular mechanism of action had an accuracy of 94%. Empagliflozin’s pharmacological action mainly affected cardiomyocyte oxidative stress modulation, and greatly influenced cardiomyocyte stiffness, myocardial extracellular matrix remodelling, heart concentric hypertrophy, and systemic inflammation. Validation of these in silico data was performed in vivo in patients with HFpEF by measuring the declining plasma concentrations of NOS2, the NLPR3 inflammasome, and TGF-β1 during 12 months of empagliflozin treatment. Using AI modelling, we identified that the main effect of empagliflozin in HFpEF treatment is exerted via NHE1 and is focused on cardiomyocyte oxidative stress modulation. These results support the potential use of empagliflozin in HFpEF.Antoni Bayes-GenisOriol Iborra-EgeaGiosafat SpitaleriMar DomingoElena Revuelta-LópezPau CodinaGermán CedielEvelyn Santiago-VacasAdriana CserkóováDomingo Pascual-FigalJulio NúñezJosep LupónNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Antoni Bayes-Genis
Oriol Iborra-Egea
Giosafat Spitaleri
Mar Domingo
Elena Revuelta-López
Pau Codina
Germán Cediel
Evelyn Santiago-Vacas
Adriana Cserkóová
Domingo Pascual-Figal
Julio Núñez
Josep Lupón
Decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence
description Abstract The use of sodium-glucose co-transporter 2 inhibitors to treat heart failure with preserved ejection fraction (HFpEF) is under investigation in ongoing clinical trials, but the exact mechanism of action is unclear. Here we aimed to use artificial intelligence (AI) to characterize the mechanism of action of empagliflozin in HFpEF at the molecular level. We retrieved information regarding HFpEF pathophysiological motifs and differentially expressed genes/proteins, together with empagliflozin target information and bioflags, from specialized publicly available databases. Artificial neural networks and deep learning AI were used to model the molecular effects of empagliflozin in HFpEF. The model predicted that empagliflozin could reverse 59% of the protein alterations found in HFpEF. The effects of empagliflozin in HFpEF appeared to be predominantly mediated by inhibition of NHE1 (Na+/H+ exchanger 1), with SGLT2 playing a less prominent role. The elucidated molecular mechanism of action had an accuracy of 94%. Empagliflozin’s pharmacological action mainly affected cardiomyocyte oxidative stress modulation, and greatly influenced cardiomyocyte stiffness, myocardial extracellular matrix remodelling, heart concentric hypertrophy, and systemic inflammation. Validation of these in silico data was performed in vivo in patients with HFpEF by measuring the declining plasma concentrations of NOS2, the NLPR3 inflammasome, and TGF-β1 during 12 months of empagliflozin treatment. Using AI modelling, we identified that the main effect of empagliflozin in HFpEF treatment is exerted via NHE1 and is focused on cardiomyocyte oxidative stress modulation. These results support the potential use of empagliflozin in HFpEF.
format article
author Antoni Bayes-Genis
Oriol Iborra-Egea
Giosafat Spitaleri
Mar Domingo
Elena Revuelta-López
Pau Codina
Germán Cediel
Evelyn Santiago-Vacas
Adriana Cserkóová
Domingo Pascual-Figal
Julio Núñez
Josep Lupón
author_facet Antoni Bayes-Genis
Oriol Iborra-Egea
Giosafat Spitaleri
Mar Domingo
Elena Revuelta-López
Pau Codina
Germán Cediel
Evelyn Santiago-Vacas
Adriana Cserkóová
Domingo Pascual-Figal
Julio Núñez
Josep Lupón
author_sort Antoni Bayes-Genis
title Decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence
title_short Decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence
title_full Decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence
title_fullStr Decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence
title_full_unstemmed Decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence
title_sort decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/25cc0ca35f374ccaaf5bcf8cbf852ee7
work_keys_str_mv AT antonibayesgenis decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT orioliborraegea decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT giosafatspitaleri decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT mardomingo decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT elenarevueltalopez decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT paucodina decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT germancediel decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT evelynsantiagovacas decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT adrianacserkoova decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT domingopascualfigal decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT julionunez decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
AT joseplupon decodingempagliflozinsmolecularmechanismofactioninheartfailurewithpreservedejectionfractionusingartificialintelligence
_version_ 1718389065316827136