Investment Decisions with Two-Factor Uncertainty
This paper considers investment problems in real options with non-homogeneous two-factor uncertainty. We derive some analytical properties of the resulting optimal stopping problem and present a finite difference algorithm to approximate the firm’s value function and optimal exercise boundary. An im...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/25ed37a81ea34a8fb0a531267a1a566a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper considers investment problems in real options with non-homogeneous two-factor uncertainty. We derive some analytical properties of the resulting optimal stopping problem and present a finite difference algorithm to approximate the firm’s value function and optimal exercise boundary. An important message in our paper is that the frequently applied quasi-analytical approach underestimates the impact of uncertainty. This is caused by the fact that the quasi-analytical solution does not satisfy the partial differential equation that governs the value function. As a result, the quasi-analytical approach may wrongly advise to invest in a substantial part of the state space. |
---|