Polynomial bivariate copulas of degree five: characterization and some particular inequalities

Bivariate polynomial copulas of degree 5 (containing the family of Eyraud-Farlie-Gumbel-Morgenstern copulas) are in a one-to-one correspondence to certain real parameter triplets (a, b, c), i.e., to some set of polynomials in two variables of degree 1: p(x, y) = ax + by + c. The set of the parameter...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Šeliga Adam, Kauers Manuel, Saminger-Platz Susanne, Mesiar Radko, Kolesárová Anna, Klement Erich Peter
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/25fdaa58c61d4d5fa4c43ece7c732d34
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Bivariate polynomial copulas of degree 5 (containing the family of Eyraud-Farlie-Gumbel-Morgenstern copulas) are in a one-to-one correspondence to certain real parameter triplets (a, b, c), i.e., to some set of polynomials in two variables of degree 1: p(x, y) = ax + by + c. The set of the parameters yielding a copula is characterized and visualized in detail. Polynomial copulas of degree 5 satisfying particular (in)equalities (symmetry, Schur concavity, positive and negative quadrant dependence, ultramodularity) are discussed and characterized. Then it is shown that for polynomial copulas of degree 5 the values of several dependence parameters (including Spearman’s rho, Kendall’s tau, Blomqvist’s beta, and Gini’s gamma) lie in exactly the same intervals as for the Eyraud-Farlie-Gumbel-Morgenstern copulas. Finally we prove that these dependence parameters attain all possible values in ]−1, 1[ if polynomial copulas of arbitrary degree are considered.