Polynomial bivariate copulas of degree five: characterization and some particular inequalities

Bivariate polynomial copulas of degree 5 (containing the family of Eyraud-Farlie-Gumbel-Morgenstern copulas) are in a one-to-one correspondence to certain real parameter triplets (a, b, c), i.e., to some set of polynomials in two variables of degree 1: p(x, y) = ax + by + c. The set of the parameter...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Šeliga Adam, Kauers Manuel, Saminger-Platz Susanne, Mesiar Radko, Kolesárová Anna, Klement Erich Peter
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/25fdaa58c61d4d5fa4c43ece7c732d34
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:25fdaa58c61d4d5fa4c43ece7c732d34
record_format dspace
spelling oai:doaj.org-article:25fdaa58c61d4d5fa4c43ece7c732d342021-12-05T14:10:45ZPolynomial bivariate copulas of degree five: characterization and some particular inequalities2300-229810.1515/demo-2021-0101https://doaj.org/article/25fdaa58c61d4d5fa4c43ece7c732d342021-03-01T00:00:00Zhttps://doi.org/10.1515/demo-2021-0101https://doaj.org/toc/2300-2298Bivariate polynomial copulas of degree 5 (containing the family of Eyraud-Farlie-Gumbel-Morgenstern copulas) are in a one-to-one correspondence to certain real parameter triplets (a, b, c), i.e., to some set of polynomials in two variables of degree 1: p(x, y) = ax + by + c. The set of the parameters yielding a copula is characterized and visualized in detail. Polynomial copulas of degree 5 satisfying particular (in)equalities (symmetry, Schur concavity, positive and negative quadrant dependence, ultramodularity) are discussed and characterized. Then it is shown that for polynomial copulas of degree 5 the values of several dependence parameters (including Spearman’s rho, Kendall’s tau, Blomqvist’s beta, and Gini’s gamma) lie in exactly the same intervals as for the Eyraud-Farlie-Gumbel-Morgenstern copulas. Finally we prove that these dependence parameters attain all possible values in ]−1, 1[ if polynomial copulas of arbitrary degree are considered.Šeliga AdamKauers ManuelSaminger-Platz SusanneMesiar RadkoKolesárová AnnaKlement Erich PeterDe Gruyterarticlecopulapolynomial inequalitycylindrical algebraic decompositiondependence parameterschur concavityultramodularityprimary 26b25, 62e10secondary 39b62, 60e05, 62h20Science (General)Q1-390MathematicsQA1-939ENDependence Modeling, Vol 9, Iss 1, Pp 13-42 (2021)
institution DOAJ
collection DOAJ
language EN
topic copula
polynomial inequality
cylindrical algebraic decomposition
dependence parameter
schur concavity
ultramodularity
primary 26b25, 62e10
secondary 39b62, 60e05, 62h20
Science (General)
Q1-390
Mathematics
QA1-939
spellingShingle copula
polynomial inequality
cylindrical algebraic decomposition
dependence parameter
schur concavity
ultramodularity
primary 26b25, 62e10
secondary 39b62, 60e05, 62h20
Science (General)
Q1-390
Mathematics
QA1-939
Šeliga Adam
Kauers Manuel
Saminger-Platz Susanne
Mesiar Radko
Kolesárová Anna
Klement Erich Peter
Polynomial bivariate copulas of degree five: characterization and some particular inequalities
description Bivariate polynomial copulas of degree 5 (containing the family of Eyraud-Farlie-Gumbel-Morgenstern copulas) are in a one-to-one correspondence to certain real parameter triplets (a, b, c), i.e., to some set of polynomials in two variables of degree 1: p(x, y) = ax + by + c. The set of the parameters yielding a copula is characterized and visualized in detail. Polynomial copulas of degree 5 satisfying particular (in)equalities (symmetry, Schur concavity, positive and negative quadrant dependence, ultramodularity) are discussed and characterized. Then it is shown that for polynomial copulas of degree 5 the values of several dependence parameters (including Spearman’s rho, Kendall’s tau, Blomqvist’s beta, and Gini’s gamma) lie in exactly the same intervals as for the Eyraud-Farlie-Gumbel-Morgenstern copulas. Finally we prove that these dependence parameters attain all possible values in ]−1, 1[ if polynomial copulas of arbitrary degree are considered.
format article
author Šeliga Adam
Kauers Manuel
Saminger-Platz Susanne
Mesiar Radko
Kolesárová Anna
Klement Erich Peter
author_facet Šeliga Adam
Kauers Manuel
Saminger-Platz Susanne
Mesiar Radko
Kolesárová Anna
Klement Erich Peter
author_sort Šeliga Adam
title Polynomial bivariate copulas of degree five: characterization and some particular inequalities
title_short Polynomial bivariate copulas of degree five: characterization and some particular inequalities
title_full Polynomial bivariate copulas of degree five: characterization and some particular inequalities
title_fullStr Polynomial bivariate copulas of degree five: characterization and some particular inequalities
title_full_unstemmed Polynomial bivariate copulas of degree five: characterization and some particular inequalities
title_sort polynomial bivariate copulas of degree five: characterization and some particular inequalities
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/25fdaa58c61d4d5fa4c43ece7c732d34
work_keys_str_mv AT seligaadam polynomialbivariatecopulasofdegreefivecharacterizationandsomeparticularinequalities
AT kauersmanuel polynomialbivariatecopulasofdegreefivecharacterizationandsomeparticularinequalities
AT samingerplatzsusanne polynomialbivariatecopulasofdegreefivecharacterizationandsomeparticularinequalities
AT mesiarradko polynomialbivariatecopulasofdegreefivecharacterizationandsomeparticularinequalities
AT kolesarovaanna polynomialbivariatecopulasofdegreefivecharacterizationandsomeparticularinequalities
AT klementerichpeter polynomialbivariatecopulasofdegreefivecharacterizationandsomeparticularinequalities
_version_ 1718371758921220096