Statistical and Visual Analysis of Audio, Text, and Image Features for Multi-Modal Music Genre Recognition
We present a multi-modal genre recognition framework that considers the modalities audio, text, and image by features extracted from audio signals, album cover images, and lyrics of music tracks. In contrast to pure learning of features by a neural network as done in the related work, handcrafted fe...
Guardado en:
Autores principales: | Ben Wilkes, Igor Vatolkin, Heinrich Müller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/260d78d3e8cc474fbad690f2379f312d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using machine learning analysis to interpret the relationship between music emotion and lyric features
por: Liang Xu, et al.
Publicado: (2021) -
Audio Feature Engineering for Occupancy and Activity Estimation in Smart Buildings
por: Gabriela Santiago, et al.
Publicado: (2021) -
Bird Species Identification Using Spectrogram Based on Multi-Channel Fusion of DCNNs
por: Feiyu Zhang, et al.
Publicado: (2021) -
Grammar features and discourse style in digital genres: The case of science-focused crowdfunding projects
por: Pérez-Llantada,Carmen
Publicado: (2021) -
Boosting COVID-19 Image Classification Using MobileNetV3 and Aquila Optimizer Algorithm
por: Mohamed Abd Elaziz, et al.
Publicado: (2021)