Research on Precipitation Forecast Based on LSTM–CP Combined Model
The tremendous progress made in the field of deep learning allows us to accurately predict precipitation and avoid major and long-term disruptions to the entire socio-economic system caused by floods. This paper presents an LSTM–CP combined model formed by the Long Short-Term Memory (LSTM) network a...
Guardado en:
Autores principales: | Yan Guo, Wei Tang, Guanghua Hou, Fei Pan, Yubo Wang, Wei Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26159ca290c34267be2bb61213fe78a6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forecasting vehicle accelerations using LSTM
por: Takeyuki ONO, et al.
Publicado: (2021) -
Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography
por: Grzegorz Kłosowski, et al.
Publicado: (2021) -
The Concept of Using LSTM to Detect Moisture in Brick Walls by Means of Electrical Impedance Tomography
por: Grzegorz Kłosowski, et al.
Publicado: (2021) -
Forecasting Electricity Load With Hybrid Scalable Model Based on Stacked Non Linear Residual Approach
por: Ayush Sinha, et al.
Publicado: (2021) -
Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting
por: Namrye Son
Publicado: (2021)