Efficient generative modeling of protein sequences using simple autoregressive models
Deep learning is a powerful tool for the design of novel protein sequences, yet can be computationally very inefficient. Here the authors propose using simple forecasting models to efficiently generate a large number of novel protein structures.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26264fe401544f27b9d9bdba0ab20a68 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Deep learning is a powerful tool for the design of novel protein sequences, yet can be computationally very inefficient. Here the authors propose using simple forecasting models to efficiently generate a large number of novel protein structures. |
---|