Efficient generative modeling of protein sequences using simple autoregressive models

Deep learning is a powerful tool for the design of novel protein sequences, yet can be computationally very inefficient. Here the authors propose using simple forecasting models to efficiently generate a large number of novel protein structures.

Guardado en:
Detalles Bibliográficos
Autores principales: Jeanne Trinquier, Guido Uguzzoni, Andrea Pagnani, Francesco Zamponi, Martin Weigt
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/26264fe401544f27b9d9bdba0ab20a68
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Deep learning is a powerful tool for the design of novel protein sequences, yet can be computationally very inefficient. Here the authors propose using simple forecasting models to efficiently generate a large number of novel protein structures.