Efficient generative modeling of protein sequences using simple autoregressive models
Deep learning is a powerful tool for the design of novel protein sequences, yet can be computationally very inefficient. Here the authors propose using simple forecasting models to efficiently generate a large number of novel protein structures.
Guardado en:
Autores principales: | Jeanne Trinquier, Guido Uguzzoni, Andrea Pagnani, Francesco Zamponi, Martin Weigt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26264fe401544f27b9d9bdba0ab20a68 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Protein design and variant prediction using autoregressive generative models
por: Jung-Eun Shin, et al.
Publicado: (2021) -
Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners.
por: Carlo Baldassi, et al.
Publicado: (2014) -
A network autoregressive model with GARCH effects and its applications.
por: Shih-Feng Huang, et al.
Publicado: (2021) -
The generative capacity of probabilistic protein sequence models
por: Francisco McGee, et al.
Publicado: (2021) -
An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model
por: Wei Fan, et al.
Publicado: (2021)