Learning Intuitive Physics and One-Shot Imitation Using State-Action-Prediction Self-Organizing Maps
Human learning and intelligence work differently from the supervised pattern recognition approach adopted in most deep learning architectures. Humans seem to learn rich representations by exploration and imitation, build causal models of the world, and use both to flexibly solve new tasks. We sugges...
Guardado en:
Autores principales: | Martin Stetter, Elmar W. Lang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26375a49689c4365acbf01ed5850008d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Single Shot Multibox Detector Automatic Polyp Detection Network Based on Gastrointestinal Endoscopic Images
por: Xiaoling Chen, et al.
Publicado: (2021) -
Open health data: Mapping the ecosystem
por: Roel Heijlen, et al.
Publicado: (2021) -
Actionable health app evaluation: translating expert frameworks into objective metrics
por: Sarah Lagan, et al.
Publicado: (2020) -
Call for emergency action to limit global temperature increases, restore biodiversity and protect health
Publicado: (2021) -
Using digital surveillance tools for near real-time mapping of the risk of infectious disease spread
por: Sangeeta Bhatia, et al.
Publicado: (2021)