Missing data estimation in extreme rainfall indices for the Metropolitan area of Cali - Colombia: An approach based on artificial neural networks
Changes observed in the current climate and projected for the future significantly concern researchers, decision-makers, and the general public. Climate indices of extreme rainfall events are a trend assessment tool to detect climate variability and change signals, which have an average reliability...
Guardado en:
Autores principales: | Camilo Ocampo-Marulanda, Wilmar L. Cerón, Alvaro Avila-Diaz, Teresita Canchala, Wilfredo Alfonso-Morales, Mary T. Kayano, Roger R. Torres |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/263d51955934447ab2ba4693e8008b64 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Detailed Trend Analysis of Extreme Climate Indices in the Upper Geum River Basin
por: Micah Lourdes Felix, et al.
Publicado: (2021) -
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
por: Taesung Kim, et al.
Publicado: (2021) -
Detecting change in precipitation indices using observed (1977–2016) and modeled future climate data in Portland, Oregon, USA
por: Alexis Kirsten Cooley, et al.
Publicado: (2021) -
Study of Building Safety Monitoring by Using Cost-Effective MEMS Accelerometers for Rapid After-Earthquake Assessment with Missing Data
por: Jian-Fu Lin, et al.
Publicado: (2021) -
Machine Learning for the Relationship of High-Energy Electron Flux between GEO and MEO with Application to Missing Values Imputation for Beidou MEO Data
por: Cui Ruifei, et al.
Publicado: (2021)