Almost global convergence to practical synchronization in the generalized Kuramoto model on networks over the n-sphere

The Kuramoto model describes how collective synchronization appears spontaneously in a population of rhythmic units and is typically studied on a one dimensional circle. Here, the authors generalise the Kuramoto model on higher-dimensional manifolds and show that it achieves almost global convergenc...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Johan Markdahl, Daniele Proverbio, La Mi, Jorge Goncalves
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/264e85146d5641a6a0f7e2035cce162c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:The Kuramoto model describes how collective synchronization appears spontaneously in a population of rhythmic units and is typically studied on a one dimensional circle. Here, the authors generalise the Kuramoto model on higher-dimensional manifolds and show that it achieves almost global convergence to synchronization and, in even dimensions, the fully synchronized state is attainable for nonidentical frequencies, in sharp contrast with the classical one-dimensional model.